Advertisement

Thermoelectric Transport Properties of Interface-Controlled p-type Bismuth Antimony Telluride Composites by Reduced Graphene Oxide

  • Ui Gyeong Hwang
  • Kyomin Kim
  • Woochul Kim
  • Weon Ho Shin
  • Won-Seon Seo
  • Young Soo LimEmail author
Original Article - Energy and Sustainability
  • 50 Downloads

Abstract

We report the thermoelectric transport properties of interface-controlled p-type bismuth antimony telluride (BST) composites using reduced graphene oxide (rGO). The composites were prepared by the spark plasma sintering (SPS) of BST–graphene oxide (GO) hybrid powder, which could induce the in situ reduction of GO into rGO. Compared to the pristine BST, the interface-controlled BST composites exhibited degraded electrical conductivities with similar Seebeck coefficients, consequently resulting in decreased power factors. However, thanks to the suppressed lattice thermal conductivity by the rGO network at the grain boundaries, this disadvantage could be compensated in terms of ZT. Our results will be helpful for understanding thermoelectric transport properties of various graphene-hybrid thermoelectric materials.

Graphical Abstract

Keywords

Thermoelectric Bi2Te3 Interface control Reduced graphene oxide 

Notes

Acknowledgements

This work was supported by the Midcareer Researcher Program (2018R1A2A2A05020902) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea.

References

  1. 1.
    Disalro, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)CrossRefGoogle Scholar
  2. 2.
    Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)CrossRefGoogle Scholar
  3. 3.
    Goldsmid, H.J., Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954)CrossRefGoogle Scholar
  4. 4.
    Goldsmid, H.J.: Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7, 2577 (2014)CrossRefGoogle Scholar
  5. 5.
    Scherrer, H., Scherrer, S.: Thermoelectric properties of bismuth antimony telluride solid solutions. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macto to Nano, vol. 27. CRC Press, Boca Raton (2006)Google Scholar
  6. 6.
    Yim, W.M., Rosi, F.D.: Compound tellurides and their alloys for Peltier cooling—a review. Solid State Electron. 15, 1121 (1972)CrossRefGoogle Scholar
  7. 7.
    Hao, F., Qiu, P., Tang, Y., Bai, S., Xing, T., Chu, H.-S., Zhang, Q., Lu, P., Zhang, T., Ren, D., Chen, J., Shi, X., Chen, L.: High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120 (2016)CrossRefGoogle Scholar
  8. 8.
    Hu, L.-P., Zhu, T.-J., Wang, Y.-G., Xie, H.-H., Xu, Z.-J., Zhao, X.-B.: Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6, e88 (2014)CrossRefGoogle Scholar
  9. 9.
    Lim, Y.S., Song, M., Lee, S., An, T.-H., Park, C., Seo, W.-S.: Enhanced thermoelectric properties and their controllability in p-type (BiSb)2Te3 compounds through simultaneous adjustment of charge and thermal transports by Cu incorporation. J. Alloys Compd. 687, 320 (2016)CrossRefGoogle Scholar
  10. 10.
    Wu, F., Wang, W., Hu, X., Tang, M.: Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing. Prog. Nat. Sci. 27, 203 (2017)CrossRefGoogle Scholar
  11. 11.
    Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008)CrossRefGoogle Scholar
  12. 12.
    Ko, J., Kim, J.Y., Choi, S.M., Lim, Y.S., Seo, W.S., Lee, K.H.: Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets. J. Mater. Chem. A 1, 12791 (2013)CrossRefGoogle Scholar
  13. 13.
    Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, Jz`W, Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W.: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109 (2015)CrossRefGoogle Scholar
  14. 14.
    Hong, M., Chasapis, T.C., Chen, Z.-G., Yang, L., Kanatzidis, M.G., Snyder, G.J., Zou, J.: n-type Bi2Te3−xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10, 4719 (2016)CrossRefGoogle Scholar
  15. 15.
    Pan, Y., Li, J.-F.: Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 8, e275 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, D., Zhao, Y., Chen, Y., Wang, B., Chen, H., Zhou, J., Liang, Z.: One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications. ACS Appl. Mater. Interfaces 7, 3224 (2015)CrossRefGoogle Scholar
  17. 17.
    Shin, W.H., Ahn, K., Jeong, M., Yoon, J.S., Song, J.M., Lee, S., Seo, W.-S., Lim, Y.S.: Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth–antimony–telluride by lattice thermal conductivity reduction. J. Alloys Compd. 718, 342 (2017)CrossRefGoogle Scholar
  18. 18.
    Nam, W.H., Lim, Y.S., Kim, W., Seo, H.K., Dae, K.S., Lee, S., Seo, W.-S., Lee, J.Y.: A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2–RGO nanocomposites. Nanoscale 9, 7830 (2017)CrossRefGoogle Scholar
  19. 19.
    Zong, P., Hanus, R., Dylla, M., Tang, Y., Liao, J., Zhang, Q., Snyder, G.J., Chen, L.: Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183 (2017)CrossRefGoogle Scholar
  20. 20.
    Lee, S.T., Lim, Y.S.: Effects of interface control using reduced graphene oxide (RGO) on the thermoelectric transport properties of polycrystalline SnSe compounds. Korean J. Met. Mater. 56, 163 (2018)Google Scholar
  21. 21.
    González, A., Goikolea, E., Barrena, J.A., Mysyk, R.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189 (2016)CrossRefGoogle Scholar
  22. 22.
    Kucinskis, A., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66 (2013)CrossRefGoogle Scholar
  23. 23.
    Li, X., Yu, J., Wageh, S., Al-Ghamdi, A.A., Xie, J.: Graphene in photocatalysis: a review. Small 12, 6640 (2016)CrossRefGoogle Scholar
  24. 24.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282 (2006)CrossRefGoogle Scholar
  25. 25.
    Watcharotone, S., Dikin, D.A., Stankovich, S., Piner, R., Jung, I., Dommett, G.H.B., Evmenenko, G., Wu, S.-E., Chen, S.-F., Liu, C.-P., Nguyen, S.T., Ruoff, R.S.: Graphene–silica composite thin films as transparent conductors. Nano Lett. 7, 1888 (2007)CrossRefGoogle Scholar
  26. 26.
    Fan, Y., Jiang, W., Kawasaki, A.: Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type. Nano Lett. 22, 3882 (2012)Google Scholar
  27. 27.
    Nam, W.H., Kim, B.B., Seo, S.G., Lim, Y.S., Kim, J.-Y., Seo, W.-S., Choi, W.K., Park, H.J., Lee, J.Y.: Structurally nanocrystalline-electrically single crystalline ZnO reduced graphene oxide composites. Nano Lett. 14, 5104 (2014)CrossRefGoogle Scholar
  28. 28.
    Zong, P.A., Chen, X.H., Zhu, Y.W., Liu, Z.W., Zeng, Y., Chen, L.: Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance. J. Mater. Chem. A 3, 8643 (2015)CrossRefGoogle Scholar
  29. 29.
    Porwal, H., Grasso, S., Mani, M.K., Reece, M.J.: In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite. J. Eur. Ceram. Soc. 34, 3357 (2014)CrossRefGoogle Scholar
  30. 30.
    Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin (1980)CrossRefGoogle Scholar
  31. 31.
    Zuev, Y., Chang, W., Kim, P.: Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009)CrossRefGoogle Scholar
  32. 32.
    Sidorov, A.N., Sherehiy, A., Jayasinghe, R., Stallard, R., Benjamin, D.K., Yu, Q., Liu, Z., Wu, W., Cao, H., Chen, Y.P., Jiang, Z., Sumanasekera, G.U.: Thermoelectric power of graphene as surface charge doping indicator. Appl. Phys. Lett. 99, 013115 (2011)CrossRefGoogle Scholar
  33. 33.
    Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat Mater. 7, 105 (2008)CrossRefGoogle Scholar
  34. 34.
    An, T.-H., Lim, Y.S., Park, M.J., Tak, J.-Y., Lee, S., Cho, H.K., Cho, J.-Y., Park, C., Seo, W.-S.: Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2−xSbxTe3 compounds. APL Mater. 4, 104812 (2016)CrossRefGoogle Scholar
  35. 35.
    Lim, Y.S., Lee, S.: Effects of Sb on the charge transport and power factor of Bi2−xSbxTe3 thermoelectric compounds prepared by hot pressing. Korean J. Met. Mater. 55, 651 (2017)CrossRefGoogle Scholar
  36. 36.
    Narenda, N., Kim, K.W.: Toward enhanced thermoelectric effects in Bi2Te3/Sb2Te3 heterostructures. Semicond. Sci. Technol. 32, 035005 (2017)CrossRefGoogle Scholar
  37. 37.
    Sehr, R., Testardi, L.R.: The optical properties of p-type Bi2Te3–Sb2Te3 alloys between 2–15 microns. J. Phys. Chem. Solids 23, 1219 (1962)CrossRefGoogle Scholar
  38. 38.
    Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  39. 39.
    Liu, W.-S., Zhang, Q., Lan, Y., Chen, S., Yan, X., Zhang, Q., Wang, H., Wang, D., Chen, G., Ren, Z.: Thermoelectric property studies on Cu-doped n-type Cux–Bi2Te2.7Se0.3 nanocomposites. Adv. Energy Mater 1, 577 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Ui Gyeong Hwang
    • 1
  • Kyomin Kim
    • 2
  • Woochul Kim
    • 2
  • Weon Ho Shin
    • 3
  • Won-Seon Seo
    • 3
  • Young Soo Lim
    • 1
    Email author
  1. 1.Department of Materials System EngineeringPukyong National UniversityBusanKorea
  2. 2.School of Mechanical EngineeringYonsei UniversitySeoulKorea
  3. 3.Energy and Environmental DivisionKorea Institute of Ceramic Engineering and TechnologyJinjuKorea

Personalised recommendations