Electronic Materials Letters

, Volume 15, Issue 1, pp 84–101 | Cite as

Soft, Self-Assembly Liquid Crystalline Nanocomposite for Superior Switching

  • Kaushik PalEmail author
  • Sami Sajjadifar
  • Mohamed Abd Elkodous
  • Yakubu Adekunle Alli
  • Fernando Gomes
  • Jaison Jeevanandam
  • Sabu Thomas
  • Alexander Sigov
Original Article – Nanomaterials


Liquid crystal (LC) has long been a feature in Materials Science and Nanotechnology, have recently been extended into the appealing domain of complex hybrid materials. The crystalline structural effects of alkoxy chain lengths and the mesogen properties of hydrogen-bonded (n-OBASA) complexes (n = 5,6,7) have been investigated in recent studies. The LC-based hybrid nanocomposite materials–obtained by the homogeneous dispersion of zinc oxide nanowires (ZnO NWs) as a dopant into hydrogen-bonded liquid-crystalline compounds—seem to be particularly promising in this article. Optimizing the geometry of surface stabilizing electro-optic, LC cell reveals the typical intermolecular hydrogen bond (H-bond) formation. Here, we explore molecular-colloidal hybrid composite matrix formed from LCs and dilute dispersions of orientation-ordered ZnO NWs, for eventual potential application in smart switchable display devices. In addition, we investigated the structural, dielectric and optical properties of the nanocomposite, and electro-optical studies which were performed by exploiting the potential during the conditions before the opening of spectrum acquisition. Our novel findings confirm that the electric field induces a charge transfer of the LC molecules to the nanomaterial, which acts as a trap for ionic charges. This effect may be utilized to achieve superior switching operation that is electro-optically tunable. Such dynamic novel switching could be harnessed in smart LCD technology and pave the way towards innovative display modulation techniques.

Graphical abstract


Liquid crystal ZnO nanowires Hybrid nanocomposite Switchable device 



All the associate colleagues and doctoral scholars at Wuhan University, China should gratefully acknowledge by Prof. Kaushik Pal. Especially, sincere thanks to my Bachelor/Masters students, technitians and scientific operators, as well as entire teams of research members should acknowledge during “BK-21 Visiting Scientist” associate position in South Korea. We are grateful to our co-workers Prof. Madhu Mohan and Dr. P. Subhapriya from Liquid Crystals Research Laboratory, BIT Sathyamangalam encouraged for liquid crystal preparation and molecular dynamics performed by ‘Gaussian’ simulation. Sincere ‘Thanks’ will go to Dean (Research) at BIHER, Chennai provides excellence of the research laboratory foundation and co-operation of existing Nanotechnology laboratory. All scientific members are gratefully acknowledged for giving scopes to develop research ideas and scientific innovations. The author M. Abd Elkodous is also grateful to Prof. Radwan (Dean- Research), for giving research friendly scopes at Nile University in Egypt.

Compliance with ethical standards

Conflict of interest

All the authors have declared that, there is no conflict of any financial interests or authorship to publish the article.


  1. 1.
    Kato, T., Mizoshita, N., Kishimoto, K.: Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45(1), 38–68 (2006)CrossRefGoogle Scholar
  2. 2.
    Goodby, J.W., et al.: Transmission and amplification of information and properties in nanostructured liquid crystals. Angew. Chem. Int. Ed. 47(15), 2754–2787 (2008)CrossRefGoogle Scholar
  3. 3.
    Tschierske, C.: Liquid crystal engineering–new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36(12), 1930–1970 (2007)CrossRefGoogle Scholar
  4. 4.
    Newsome, C., et al.: Laser etched gratings on polymer layers for alignment of liquid crystals. Appl. Phys. Lett. 72(17), 2078–2080 (1998)CrossRefGoogle Scholar
  5. 5.
    Kagajyo, T., et al.: Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method. Jpn. J. Appl. Phys. 44(1S), 578 (2005)CrossRefGoogle Scholar
  6. 6.
    Varghese, S., et al.: Microrubbing technique to produce high pretilt multidomain liquid crystal alignment. Appl. Phys. Lett. 85(2), 230–232 (2004)CrossRefGoogle Scholar
  7. 7.
    Rüetschi, M., et al.: Creation of liquid crystal waveguides with scanning force microscopy. Science 265(5171), 512–514 (1994)CrossRefGoogle Scholar
  8. 8.
    Suh, D., Choi, S.J., Lee, H.H.: Rigiflex lithography for nanostructure transfer. Adv. Mater. 17(12), 1554–1560 (2005)CrossRefGoogle Scholar
  9. 9.
    Kim, S.R., et al.: Fabrication of polymeric substrates with well-defined nanometer-scale topography and tailored surface chemistry. Adv. Mater. 14(20), 1468–1472 (2002)CrossRefGoogle Scholar
  10. 10.
    Park, H.-G., et al.: Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography. Soft Matter 7(12), 5610–5614 (2011)CrossRefGoogle Scholar
  11. 11.
    Bouteiller, L., Barny, P.L.: Polymer-dispersed liquid crystals: preparation, operation and application. Liq. Cryst. 21(2), 157–174 (1996)CrossRefGoogle Scholar
  12. 12.
    Spruce, G., Pringle, R.: Polymer dispersed liquid crystal (PDLC) films. Electron. Commun. Eng. J. 4(2), 91–100 (1992)CrossRefGoogle Scholar
  13. 13.
    Crawford, G.P., Zumer, S.: Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  14. 14.
    Armitage, D., Underwood, I., Wu, S.-T.: Introduction to Microdisplays, vol. 11. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  15. 15.
    Crawford, G.: Flexible Flat Panel Displays, p. 290. Wiley, Chichester (2005)CrossRefGoogle Scholar
  16. 16.
    Hinojosa, A., Sharma, S.C.: Effects of gold nanoparticles on electro-optical properties of a polymer-dispersed liquid crystal. Appl. Phys. Lett. 97(8), 081114 (2010)CrossRefGoogle Scholar
  17. 17.
    Bozhevolnyi, S.I., Universitet, A., Shalaev, V.: Nanophotonics with surface plasmons-Part I. Photonics Spectra 40(1), 58 (2006)Google Scholar
  18. 18.
    Shalaev, V.M.: Nanophotonics with Surface Plasmons—Part ll. Photonics Spectra (2006)Google Scholar
  19. 19.
    Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824 (2003)CrossRefGoogle Scholar
  20. 20.
    Pal, K., et al.: Design, synthesis and application of hydrogen bonded smectic liquid crystal matrix encapsulated ZnO nanospikes. J. Mater. Chem. C 3(45), 11907–11917 (2015)CrossRefGoogle Scholar
  21. 21.
    Pal, K., et al.: Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications. Appl. Surf. Sci. 357, 1499–1510 (2015)CrossRefGoogle Scholar
  22. 22.
    Pal, K., et al.: Optical and electrical investigation of ZnO nano-wires array centre micro-flowers turn to hierarchical nano-rose structures. J. Nanosci. Nanotechnol. 15, 1–10 (2016)Google Scholar
  23. 23.
    Pal, K., et al.: Synthetic strategy of porous ZnO and CdS nanostructures doped ferroelectric liquid crystal and its optical behavior. J. Mol. Struct. 1035, 76–82 (2013)CrossRefGoogle Scholar
  24. 24.
    Jiao, M., et al.: Alignment layer effects on thin liquid crystal cells. Appl. Phys. Lett. 92(6), 061102 (2008)CrossRefGoogle Scholar
  25. 25.
    Lu, S.-Y., Chien, L.-C.: Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties. Opt. Express 16(17), 12777–12785 (2008)CrossRefGoogle Scholar
  26. 26.
    Toney, M.F., et al.: Near-surface alignment of polymers in rubbed films. Nature 374(6524), 709 (1995)CrossRefGoogle Scholar
  27. 27.
    Orbitals, I.F.F.: Organic Chemical Reactions. Wiley, New York (1976)Google Scholar
  28. 28.
    Ginzburg, V.: Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials. Soviet Phys. Solid State 2, 1824–1834 (1961)Google Scholar
  29. 29.
    Berlyand, L.: Homogenization of the Ginzburg-Landau functional with a surface energy term. Asymptot. Anal. 21(1), 37–59 (1999)Google Scholar
  30. 30.
    Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices, vol. 13. Springer, Berlin (1994)CrossRefGoogle Scholar
  31. 31.
    Meyer, R.B., et al.: Equilibrium size and textures of islands in free-standing smectic C* films. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 364(1), 123–131 (2001)CrossRefGoogle Scholar
  32. 32.
    Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1991)CrossRefGoogle Scholar
  33. 33.
    Pal, K., et al.: Functionalized graphene oxide dispersed hydrogen bonded liquid crystals efficient electro-optical switching. J. Display Technol. 12(3), 281–287 (2016)CrossRefGoogle Scholar
  34. 34.
    Pal, K., et al.: Efficient one-step novel synthesis of ZnO nanospikes to nanoflakes doped OAFLCs (W-182) host: optical and dielectric response. Appl. Surf. Sci. 280, 405–417 (2013)CrossRefGoogle Scholar
  35. 35.
    Vijayakumar, V., Murugadass, K., Mohan, M.: Inter hydrogen bonded complexes of hexadecylaniline and alkoxy benzoic acids: a study of crystallization kinetics. Braz. J. Phys. 39(3), 600–605 (2009)CrossRefGoogle Scholar
  36. 36.
    Nakamoto, K., Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, Hoboken (1977)Google Scholar
  37. 37.
    Vijayakumar, V., Madhu Mohan, M.: Experimental evidence of an optical shutter in cholesteric phase of a double hydrogen bonded liquid crystal. Braz. J. Phys. 39(4), 677–683 (2009)CrossRefGoogle Scholar
  38. 38.
    Guthrie, R.D.: Introduction to Spectroscopy (Pavia, Donald; Lampman, Gary M.; Kriz, George S., Jr.). ACS Publications, Washington (1979)CrossRefGoogle Scholar
  39. 39.
    AL-TURKI, A.M.: Effect of preparation methods on the particles size, dielectric constant and antibacterial properties of ZnO nanoparticles and thin film of ZnO/Chitosan. Orient. J. CHEM. 34(1), 548–554 (2018). CrossRefGoogle Scholar
  40. 40.
    Hsu, S.C., et al.: Effect of the polyimide structure and ZnO concentration on the morphology and characteristics of polyimide/ZnO nanohybrid films. Macromol. Chem. Phys. 206(2), 291–298 (2005)CrossRefGoogle Scholar
  41. 41.
    Wu, C., et al.: Morphology-controllable graphene–TiO 2 nanorod hybrid nanostructures for polymer composites with high dielectric performance. J. Mater. Chem. 21(44), 17729–17736 (2011)CrossRefGoogle Scholar
  42. 42.
    Ahmad, K., Pan, W., Wu, H.: High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. RSC Adv. 5(42), 33607–33614 (2015)CrossRefGoogle Scholar
  43. 43.
    Jammula, R.K., et al.: Strong interfacial polarization in ZnO decorated reduced-graphene oxide synthesized by molecular level mixing. Phys. Chem. Chem. Phys. 17(26), 17237–17245 (2015)CrossRefGoogle Scholar
  44. 44.
    Wang, D., et al.: Functionalized graphene–BaTiO 3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1(20), 6162–6168 (2013)CrossRefGoogle Scholar
  45. 45.
    Roy, A.K., et al.:, Electrical Properties and AC Conductivity of (Bi 0.5 Na 0.5) 0.94 Ba 0.06 TiO 3 Ceramic. ISRN Ceramics (2012)Google Scholar
  46. 46.
    Almond, D.P., Bowen, C.: Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. Phys. Rev. Lett. 92(15), 157601 (2004)CrossRefGoogle Scholar
  47. 47.
    Bowen, C., Almond, D.P.: Modelling the’universal’dielectric response in heterogeneous materials using microstructural electrical networks. Mater. Sci. Technol. 22(6), 719–724 (2006)CrossRefGoogle Scholar
  48. 48.
    Raghasudha, M., Ravinder, D., Veerasomaiah, P.: Influence of Cr3 + Ion on the Dielectric Properties of Nano Crystalline Mg-Ferrites Synthesized by Citrate-Gel Method. Materials Sciences and Applications 04(07), 7 (2013)CrossRefGoogle Scholar
  49. 49.
    Miller, S., et al.: Device modeling of ferroelectric capacitors. J. Appl. Phys. 68(12), 6463–6471 (1990)CrossRefGoogle Scholar
  50. 50.
    Miller, S., et al.: Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions. J. Appl. Phys. 70(5), 2849–2860 (1991)CrossRefGoogle Scholar
  51. 51.
    Yang, P., et al.: Electrical properties of SrBi 2 Ta 2 O 9 ferroelectric thin films at low temperature. Appl. Phys. Lett. 81(24), 4583–4585 (2002)CrossRefGoogle Scholar
  52. 52.
    Si, G., et al.: Liquid-crystal-enabled active plasmonics: a review. Materials 7(2), 1296–1317 (2014)CrossRefGoogle Scholar
  53. 53.
    Ma, R., et al.: Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18(20), 205605 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Kaushik Pal
    • 1
    Email author
  • Sami Sajjadifar
    • 2
  • Mohamed Abd Elkodous
    • 3
  • Yakubu Adekunle Alli
    • 4
  • Fernando Gomes
    • 5
  • Jaison Jeevanandam
    • 6
  • Sabu Thomas
    • 7
  • Alexander Sigov
    • 8
  1. 1.Department of NanotechnologyBharath Institute of Higher Education and Research(BIHER), Bharath UniversitySelaiyur, ChennaiIndia
  2. 2.Department of ChemistryPayame Noor University (PNU), IlamTehranIran
  3. 3.Center for Nanotechnology (CNT), School of Engineering and Applied SciencesNile UniversitySheikh ZayedEgypt
  4. 4.Department of Chemistry, College of Physical SciencesFederal University of AgricultureAbeokutaNigeria
  5. 5.Instituto de Macromoléculas:Professora Eloisa ManoCentro de Technologia-Cidade UniversitáriaRio de JenerioBrazil
  6. 6.Department of Chemical EngineeringCurtin UniversityMiriMalaysia
  7. 7.IIUCN, School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia
  8. 8.Department of NanoelectronicsMIREA - Russian Technological UniversityMoscowRussian Federation

Personalised recommendations