Electronic Materials Letters

, Volume 15, Issue 1, pp 56–60 | Cite as

All-Inorganic Perovskite CsPbI2Br Through Co-evaporation for Planar Heterojunction Solar Cells

  • Chan-Gyu Park
  • Won-Gyu Choi
  • Sungjae Na
  • Taeho MoonEmail author
Original Article - Energy and Sustainability


All-inorganic perovskite CsPbI2Br thin films are formed by the dual-source thermal evaporation of CsBr and PbI2. The resultant perovskite layers possess a uniform and dense microstructure with a bandgap of 1.97 eV. Planar heterojunction perovskite solar cells are fabricated using TiO2 and spiro-OMeTAD charge-transporting layers in the regular n-i-p form. The devices exhibit a best efficiency of 5.7%. Thermal stability evaluation is performed at 85 °C under atmosphere, and ~ 85% of the initial efficiency is maintained after 24 h.

Graphical Abstract


All-inorganic perovskite CsPbI2Br Co-evaporation Thermal stability Planar heterojunction solar cells 



This research was supported by the Leading Human Resource Training Program of Regional Neo Industry (2016H1D5A1910305) and Basic Science Research Program (2017R1D1A1A02017758) through the National Research Foundation of Korea (NRF). The present research was conducted by the research fund of Dankook University in 2017.


  1. 1.
    Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Graetzel, M., Mhaisalkar, S., Sum, T.C.: Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344 (2013)CrossRefGoogle Scholar
  2. 2.
    Kayesh, M.E., Matsuishi, K., Chowdhury, T.H., Kaneko, R., Noda, T., Islam, A.: Enhanced photovoltaic performance of perovskite solar cells by copper chloride (CuCl2) as an additive in single solvent perovskite precursor. Electron. Mater. Lett. 14, 712 (2018)CrossRefGoogle Scholar
  3. 3.
    Jung, H.S., Park, N.-G.: Perovskite solar cells: from materials to devices. Small 11, 10 (2015)CrossRefGoogle Scholar
  4. 4.
    Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Graetzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized solar cell applications. J. Mater. Chem. A 1, 5628 (2013)CrossRefGoogle Scholar
  5. 5.
    Jo, J.W., Yoo, Y., Jeong, T., Ahn, S., Ko, M.J.: Low-temperature processable charge transporting materials for the flexible perovskite solar cells. Electron. Mater. Lett. 14, 657 (2018)CrossRefGoogle Scholar
  6. 6.
    Chen, C.-Y., Lin, H.-Y., Chiang, K.-M., Tsai, W.-L., Huang, Y.-C., Tsao, C.-S., Lin, H.-W.: All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv. Mater. 29, 1605290 (2017)CrossRefGoogle Scholar
  7. 7.
    Choi, W.-G., Kang, D.-W., Na, S., Park, C.-G., Gökdemir, F.P., Moon, T.: Sequentially vapor-grown hybrid perovskite for planar heterojunction solar cells. Nanoscale Res. Lett. 13, 9 (2018)CrossRefGoogle Scholar
  8. 8.
    Shin, G.S., Choi, W.-G., Na, S., Moon, T.: Lead acetate based hybrid perovskite though hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155 (2018)CrossRefGoogle Scholar
  9. 9.
    Shin, G.S., Choi, W.-G., Na, S., Ryu, S.O., Moon, T.: Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017)CrossRefGoogle Scholar
  10. 10.
    Ávila, J., Momblona, C., Boix, P.P., Sessolo, M., Bolink, H.J.: Vapor-deposited perovskites: the route to high-performance solar cell production? Joule 1, 431 (2017)CrossRefGoogle Scholar
  11. 11.
    Sessolo, M., Momblona, C., Gil-Escrig, L., Bolink, H.J.: Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bull. 40, 660 (2015)CrossRefGoogle Scholar
  12. 12.
    Ome, L.K., Leyden, M.R., Wang, S., Qi, Y.: Organometal halide perovskite thin films and solar cells by vapor deposition. J. Mater. Chem. A 4, 6693 (2016)CrossRefGoogle Scholar
  13. 13.
    Chen, Q., Zhou, H., Song, T.B., Luo, S., Hong, Z., Duan, H.S., Dou, L., Liu, Y., Yang, Y.: Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158 (2014)CrossRefGoogle Scholar
  14. 14.
    Shen, P.S., Chiang, Y.H., Li, M.H., Guo, T.F., Chen, P.: Research update: hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction. APL Mater. 4, 091509 (2016)CrossRefGoogle Scholar
  15. 15.
    Liu, C., Fan, J., Zhang, X., Shen, Y., Yang, L., Mai, Y.: Hysteretic behavior upon light soaking in perovskite solar cells prepared Via modified vapor-assisted solution process. ACS Appl. Mater. Inter. 7, 9066 (2015)CrossRefGoogle Scholar
  16. 16.
    Momblona, C., Gill-Escrig, L., Bandiello, E., Hutter, E.M., Sessolo, M., Lederer, K., Blochwitz-Nimith, J.: Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456 (2016)CrossRefGoogle Scholar
  17. 17.
    Hwang, B., Lee, J.S.: A strategy to design high-density nanoscale devices utilizing vapor deposition of metal halide perovskite materials. Adv. Mater. 29, 1701048 (2017)CrossRefGoogle Scholar
  18. 18.
    Hsiao, S.Y., Lin, H.L., Lee, W.H., Tsai, W.L., Chiang, K.M., Liao, W.Y., Ren-Wu, C.-Z., Chen, C.-Y., Lin, H.-W.: Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Adv. Mater. 28, 7013 (2016)CrossRefGoogle Scholar
  19. 19.
    Luo, P., Liu, Z., Xia, W., Yuan, C., Cheng, J., Lu, Y.: Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl. Mater. Inter. 7, 2708 (2015)CrossRefGoogle Scholar
  20. 20.
    Lin, S.P., Chang, S.K., Lee, H.C., Guo, P.T., Thiyagu, S., Lin, C.F.: Efficient planar heterojunction perovskite solar cells via low-pressure proximity evaporation technique. IEEE J. Photovolt. 7, 184 (2017)CrossRefGoogle Scholar
  21. 21.
    Du, T., Wang, N., Chen, H., Lin, H., He, H.: Comparative study of vapor-and solution-crystallized perovskite for planar heterojunction solar cells. ACS Appl. Mater. Inter. 7, 3382 (2015)CrossRefGoogle Scholar
  22. 22.
    Li, N., Shi, C., Zhang, Z., Wang, Y., Xiao, G., Wang, R.: 130 °C CH3NH3I treatment temperature in vapor-assisted solution process for large grain and full-coverage perovskite thin films. Opt. Mater. 60, 230 (2016)CrossRefGoogle Scholar
  23. 23.
    Gujar, T.P., Thelakkat, M.: Highly reproducible and efficient perovskite solar cells with extraordinary stability from robust CH3NH3PbI3: towards large-area devices. Energy Technol. 4, 449 (2016)CrossRefGoogle Scholar
  24. 24.
    Costa, J.C., Azevedo, J., Santos, L.M., Mendes, A.: On the deposition of lead halide perovskite precursors by physical vapor method. J. Phys. Chem. C 121, 2080 (2017)CrossRefGoogle Scholar
  25. 25.
    Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M., Graetzel, M., Nazeeruddin, M.K., Bolink, H.J.: Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 8, 128 (2014)CrossRefGoogle Scholar
  26. 26.
    Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)CrossRefGoogle Scholar
  27. 27.
    Frolova, L.A., Anokhin, D.V., Piryazev, A.A., Luchkin, S.Y., Dremova, N.N., Stevenson, K.J., Troshin, P.A.: Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67 (2016)CrossRefGoogle Scholar
  28. 28.
    Sutton, R.J., Eperon, G.E., Miranda, L., Parrott, E.S., Kamino, B.A., Patel, J.B., Hörantner, M.T., Johnston, M.B., Haghighirad, A.A., Moore, D.T., Snaith, H.J.: Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016)CrossRefGoogle Scholar
  29. 29.
    Nam, J.K., Chai, S.U., Cha, W., Choi, Y.J., Kim, W., Jung, M.S., Kwon, J., Kim, D., Park, J.H.: Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 17, 2028 (2017)CrossRefGoogle Scholar
  30. 30.
    Yonezawa, K., Yamamoto, K., Shahiduzzaman, M., Furumoto, Y., Hamada, K., Ripolles, T.S., Karakawa, M., Kuwabara, T., Takahashi, K., Hayase, S., Taima, T.: Annealing effects on CsPbI3-based planar heterojunction perovskite solar cells formed by vacuum deposition method. Jpn. J. Appl. Phys. 56, 04CS11 (2017)CrossRefGoogle Scholar
  31. 31.
    Beal, R.E., Slotcavage, D.J., Leijtens, T., Bowring, A.R., Belisle, R.A., Nguyen, W.H., Burkhard, G.F., Hoke, E.T., McGehee, M.D.: Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746 (2016)CrossRefGoogle Scholar
  32. 32.
    Kim, Y.G., Kim, T.Y., Oh, J.H., Choi, K.S., Kim, Y.J., Kim, S.Y.: Cesium lead iodide solar cells controlled by annealing temperature. Phys. Chem. Chem. Phys. 19, 6257 (2017)CrossRefGoogle Scholar
  33. 33.
    Eperon, G.E., Paternò, G.M., Sutton, R.J., Zampetti, A., Haghighirad, A.A., Cacialli, F., Snaith, H.J.: Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688 (2015)CrossRefGoogle Scholar
  34. 34.
    Ma, Q., Huang, S., Wen, X., Green, M.A., Ho-Baillie, A.W.: Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 1502202 (2016)CrossRefGoogle Scholar
  35. 35.
    Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., Cahen, D.: Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Chan-Gyu Park
    • 1
  • Won-Gyu Choi
    • 1
  • Sungjae Na
    • 1
  • Taeho Moon
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringDankook UniversityCheonanKorea

Personalised recommendations