Electronic Materials Letters

, Volume 15, Issue 1, pp 49–55 | Cite as

Oxide Reduction Process for the Synthesis of p-Type BixSb2−xTe3 Compounds and Related Thermoelectric Transport Properties

  • Young Soo Lim
  • Chaeseon Lim
  • Gil-Geun LeeEmail author
Original Article - Energy and Sustainability


We propose the oxide reduction process for the fabrication of p-type BixSb2−xTe3 (x = 0, 0.14, 0.24, 0.32, 0.40 and 0.54) compounds. Using starting materials in oxide forms only (Bi2O3, Sb2O3, and TeO2), we could fabricate the compounds with competitive ZT values through the proposed process. The highest ZT of 1.23 was achieved at 373 K in Bi0.32Sb1.68Te3, and the opportunity for tuning the optimum operating temperature of the compounds was also found. The effects of the Bi content on the thermoelectric transport properties were investigated in detail, and it was proven from the viewpoints of structural, electrical, and thermal properties that oxide reduction process could be a general way to fabricate Bi2Te3-based thermoelectric compounds.

Graphical Abstract


Thermoelectric Bi2Te3 Oxide reduction process Spark plasma sintering 



This work was supported by Mid-career Researcher Program (2018R1A2A2A05020902) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea.


  1. 1.
    Disalro, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)CrossRefGoogle Scholar
  2. 2.
    Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)CrossRefGoogle Scholar
  3. 3.
    Goldsmid, H.J., Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954)CrossRefGoogle Scholar
  4. 4.
    Goldsmid, H.J.: Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7, 2577 (2014)CrossRefGoogle Scholar
  5. 5.
    Belov, Y.M., Maniakin, S.M., Morgunov, I.V.: Review of methods of themoelectric materials mass production. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macto to Nano. CRC Press, Boca Raton (2006). (Chap. 20) Google Scholar
  6. 6.
    Penn, A.W.: The thermoelectric properties of n-type single crystals of bismuth seleno-telluride and their relationship to those pressed powder compacts. Adv. Energy Convers. 7, 257 (1968)CrossRefGoogle Scholar
  7. 7.
    Testardi, L.R., Bierly Jr., J.N., Donahoe, F.J.: Transport properties of p-type Bi2Te3–Sb2Te3 alloys in the temperature range 80–370°K. J. Phys. Chem. Solids 23, 1209 (1962)CrossRefGoogle Scholar
  8. 8.
    Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008)CrossRefGoogle Scholar
  9. 9.
    Ko, J., Kim, J.Y., Choi, S.M., Lim, Y.S., Seo, W.S., Lee, K.H.: Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets. J. Mater. Chem. A 1, 12791 (2013)CrossRefGoogle Scholar
  10. 10.
    Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, J.W., Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W.: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109 (2015)CrossRefGoogle Scholar
  11. 11.
    Hong, M., Chasapis, T.C., Chen, Z.-G., Yang, L., Kanatzidis, M.G., Snyder, G.J., Zou, J.: n-type Bi2Te3−xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10, 4719 (2016)CrossRefGoogle Scholar
  12. 12.
    Pan, Y., Li, J.-F.: Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 8, e275 (2016)CrossRefGoogle Scholar
  13. 13.
    Pan, Y., Wei, T.-R., Cao, Q., Li, J.-F.: Mechanically enhanced p- and n-type Bi2Te3-based thermoelectricmaterials reprocessed from commercial ingots by ball milling andspark plasma sintering. Mater. Sci. Eng. B 197, 75 (2015)CrossRefGoogle Scholar
  14. 14.
    Lim, Y.S., Wi, S.-M., Lee, G.-G.: J. Eur. Ceram. Soc. 37, 3361 (2017)CrossRefGoogle Scholar
  15. 15.
    Lee, G.-G., Park, B.-G., Kim, W.-Y., Kim, K.-T., Ha, G.-H.: Synthesis of Bi–Te–Se-based thermoelectric powder by an oxide-reduction process. Electron. Mater. Lett. 6, 123 (2010)CrossRefGoogle Scholar
  16. 16.
    Lee, G., Ha, G.: Synthesis of Bi0.5Sb1.5Te3 thermoelectric powder using an oxide-reduction proccess. J. Electron. Mater. 48, 1697 (2014)CrossRefGoogle Scholar
  17. 17.
    Scherrer, H., Scherrer, S.: Thermoelectric Properties of bismuth antimony telluride solid solutions. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macto to Nano. CRC Press, Boca Raton (2006). (Chap. 27) Google Scholar
  18. 18.
    An, T.-H., Lim, Y.S., Park, M.J., Tak, J.-Y., Lee, S., Cho, H.K., Cho, J.-Y., Park, C., Seo, W.-S.: Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2−xSbxTe3 compounds. APL Mater. 4, 104812 (2016)CrossRefGoogle Scholar
  19. 19.
    Lim, Y.S., Song, M., Lee, S., An, T.-H., Park, C., Seo, W.-S.: Enhanced thermoelectric properties and their controllability in p-type (BiSb)2Te3 compounds through simultaneous adjustment of charge and thermal transports by Cu incorporation. J. Alloys Compd. 687, 320 (2016)CrossRefGoogle Scholar
  20. 20.
    Miller, G.R., Li, C.Y.: Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26, 173 (1965)CrossRefGoogle Scholar
  21. 21.
    Starý, Z., Horák, J., Stordeur, M., Stölzer, M.: Antisite defects in Sb2−xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 29 (1988)CrossRefGoogle Scholar
  22. 22.
    Horák, J., Čermák, K., Koudelka, L.: Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47, 805 (1986)CrossRefGoogle Scholar
  23. 23.
    Hashibon, A., Elsässer, C.: First-principles density functional theory study of natice point defects in Bi2Te3. Phys. Rev. B 84, 144117 (2011)CrossRefGoogle Scholar
  24. 24.
    Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  25. 25.
    Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin (1980)CrossRefGoogle Scholar
  26. 26.
    Yu, H.J., Jeong, M., Lim, Y.S., Seo, W.-S., Kwon, O.-J., Park, C.-H., Hwang, H.-J.: Effects of Cu addition on band gap energy, density of state effective mass and charge transport properties in Bi2Te3 composites. RSC Adv. 4, 43811 (2014)CrossRefGoogle Scholar
  27. 27.
    Goldsmid, H.J.: Introduction to Thermoelectricity. Springer, Berlin (2010)CrossRefGoogle Scholar
  28. 28.
    Liu, W.-S., Zhang, Q., Lan, Y., Chen, S., Yan, X., Zhang, Q., Wang, H., Wang, D., Chen, G., Ren, Z.: Thermoelectric property studies on Cu-doped n-type Cux–Bi2Te2.7Se0.3 nanocomposites. Adv. Energy Mater. 1, 577 (2011)CrossRefGoogle Scholar
  29. 29.
    Kim, H.-S., Gibbs, Z.M., Tang, Y., Wang, H., Snyder, G.J.: Characterization of Lorenz number with seebeck coefficient measurement. APL Mater. 3, 041506 (2015)CrossRefGoogle Scholar
  30. 30.
    Lu, L.-P., Zhu, T.-J., Wang, Y.-G., Xie, H.-H., Xu, Z.-J., Zhao, X.-B.: Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia 6, e88 (2014)CrossRefGoogle Scholar
  31. 31.
    Sehr, R., Testardi, L.R.: The optical properties of p-type Bi2Te3–Sb2Te3 alloys between 2–15 microns. J. Phys. Chem. Solids 23, 1219 (1962)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials System EngineeringPukyong National UniversityBusanKorea

Personalised recommendations