Electronic Materials Letters

, Volume 15, Issue 1, pp 18–26 | Cite as

The Luminescence Properties and Thermal Stability of a Green-Blue Color Tunable Sr2SiO4:Tb3+, Ce3+ Phosphor

  • Tianpeng Yu
  • Lixi WangEmail author
  • Xiaojuan Yang
  • Wenhao Ding
  • Qitu Zhang


In this paper, green-blue emitting Sr2SiO4 (SSO):0.03Tb3+, xCe3+ (x = 0–0.005) materials were synthesized via a solid-state reaction method. The crystal structures, luminescence properties, decay time, and thermal stability were measured in this work. The as-prepared phosphors exhibit both an indigo emission of Ce3+ and green emission of Tb3+ with considerable intensity (λex= 300 nm). Tb3+ ion emission was intensified obviously with co-doping Ce3+. The luminescence spectra of Sr2SiO4 (SSO):0.03Tb3+, Ce3+ shows characteristic line of Tb3+ ion transition (5D4 → 7F5). Tunable green-blue color can be obtained by the addition of Ce3+ ions. An effective energy transfer process between Tb3+ and Ce3+ was supposed and confirmed from decay curves. In addition, the energy transfer mechanism from Ce3+ to Tb3+ ions in the Sr2SiO4 (SSO) host is electric multipolar interaction. Sr2SiO4 (SSO):Tb3+, Ce3+ phosphor exhibits good thermal stability, the quantum yield was about 43.67%, indicating a potential candidate for solid-state lighting.

Graphical Abstract

Sr2SiO4:Tb3+, Ce3+ phosphor can obtain tunable green-blue emission based on the energy transfer between Ce3+ and Tb3+ ion. Almost 90% of the luminescence intensity of SSO:0.03Tb3+, 0.003Ce3+ phosphor was retained after an increase in temperature to 200 °C.


Sr2SiO4:Tb3+, Ce3+ Energy transfer Thermal stability Phosphors Tunable green-blue color 



The authors acknowledge the generous financial support from Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP, PPZY2015B128) and National Natural Science Foundation of China (51202111).


  1. 1.
    Huang, X.Y., Han, S.Y., Huang, W., Liu, X.G.: Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y.H., Zhang, L.X., Deng, R.R., Tian, J., Zong, Y., Jin, D.Y., Liu, X.G.: Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136, 4893–4896 (2014)CrossRefGoogle Scholar
  3. 3.
    Shi, J.P., Sun, X., Zhu, J.F., Li, J.L., Zhang, H.W.: One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging. Nanoscale 8, 9798–9804 (2016)CrossRefGoogle Scholar
  4. 4.
    Chan, E.M.: Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chem. Soc. Rev. 44, 1653–1679 (2015)CrossRefGoogle Scholar
  5. 5.
    Li, X.M., Zhang, F., Zhao, D.Y.: Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 44, 1346–1378 (2015)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Wang, J., Wang, X.M., Pan, F.J., Zhou, T.L., Xie, R.J.: Colour tuning via crystalline site-selected energy transfer in a Sr2SiO4:Eu2+, Pr3+ phosphor. J. Mater. Chem. C 5, 1022–1026 (2017)CrossRefGoogle Scholar
  7. 7.
    Xia, Z.G., Miao, S.H., Molokeev, Maxim S., Chen, M.Y., Liu, Q.L.: Structure and luminescence properties of Eu2+ doped LuxSr2–xSiNxO4–x phosphors evolved from chemical unit cosubstitution. J. Mater. Chem. C 4, 1336–1344 (2016)CrossRefGoogle Scholar
  8. 8.
    Zhou, J.J., Shirahata, N., Sun, H.T., Ghosh, B., Ogawara, M., Teng, Y., Zhou, S.F., Sa Chu, R.G., Fujii, M., Qiu, J.R.: Efficient dual-modal NIR-to-NIR emission of rare earth ions co-doped nanocrystals for biological fluorescence imaging. J. Phys. Chem. Lett. 4, 402–408 (2013)CrossRefGoogle Scholar
  9. 9.
    Chen, D.Q., Liu, L., Huang, P., Ding, M.Y., Zhong, J.S., Ji, Z.G.: Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture. J. Phys. Chem. Lett. 6, 2833–2840 (2015)CrossRefGoogle Scholar
  10. 10.
    Dong, H., Sun, L.D., Yan, C.H.: Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 44, 1608–1643 (2015)CrossRefGoogle Scholar
  11. 11.
    Li, J.K., Li, J.G., Li, X.D., Sun, X.D.: Photoluminescence properties of phosphors based on Lu3+-stabilized Gd3Al5O12:Tb3+/Ce3+ garnet solid solutions. Opt. Mater. 62, 328–334 (2016)CrossRefGoogle Scholar
  12. 12.
    Zhao, L.L., Liu, Y.Q., Zhai, C.X., Liao, F.Y., Gao, Y.J.: Photoluminescence properties of Tb-doped and (Zn,Tb) co-doped barium strontium titanate crystalline powders. J. Alloys Compd. 694, 721–725 (2017)CrossRefGoogle Scholar
  13. 13.
    Jia, Y.C., Lü, W., Guo, N., Lü, W.Z., Zhao, Q., You, H.P.: Spectral tuning of the n-UV convertible oxynitride phosphor: orange color emitting realization via an energy transfer mechanism. Phys. Chem. Chem. Phys. 15, 13810–13813 (2013)CrossRefGoogle Scholar
  14. 14.
    Li, G.H., Lan, S., Li, L.L., Li, M.M., Bao, W.W., Zou, H.F., Xu, X.C., Gan, S.C.: Tunable luminescence properties of NaLa(MoO4)2:Ce3+, Tb3+ phosphors for near UV-excited white light-emitting-diodes. J. Alloys Compd. 513, 145–149 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, N.L., Zhang, S.Z., Zhang, X.Y., Wei, Y.: Preparation of LaPO4:Ce3+, Tb3+ nanophosphors by mixed co-precipitation process and their photoluminescence properties. Ceram. Int. 40, 16253–16258 (2014)CrossRefGoogle Scholar
  16. 16.
    Yang, Z.H., Hu, Y.H., Chen, L., Wang, X.J., Ju, G.F.: Fluorescence and energy transfer in CaMgP2O7:Ce3+, Tb3+ phosphor. Mater. Sci. Eng. B 193, 27–31 (2015)CrossRefGoogle Scholar
  17. 17.
    Yang, Z.F., Xu, D.H., Sun, J.Y., Du, J.N., Gao, X.D.: Luminescence properties and energy transfer investigations of Sr3Lu(PO4)3:Ce3+, Tb3+ phosphors. Mater. Sci. Eng. B 211, 13–19 (2016)CrossRefGoogle Scholar
  18. 18.
    Guo, Q., Wang, Q., Jiang, L., Liao, L., Liu, H., Mei, L.: A novel apatite, Lu5(SiO4)3N:(Ce, Tb), phosphor material: synthesis, structure and applications for NUV-LEDs. Phys. Chem. Chem. Phys. 18, 15545–15554 (2016)CrossRefGoogle Scholar
  19. 19.
    Chiriu, D., Stagi, L., Carbonaro, C.M., Riccardo, C., Pier, C.R.: Energy transfer mechanism between Ce and Tb ions in sol–gel synthesized YSO crystals. Mater. Chem. Phys. 171, 201–207 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, M.F., Liang, Y.J., Xu, S.Y., Zhu, Y.L., Wu, X.Y., Liu, S.Q.: Investigation of luminescence properties and the energy transfer mechanism of tunable emitting Sr3Y2(Si3O9)2:Eu2+,Tb3+ phosphors. CrystEngComm 18, 68–76 (2016)CrossRefGoogle Scholar
  21. 21.
    Liu, Y.W., Wang, Z.J., Zhong, J.P., Pan, F.J., Liang, H.B., Xiao, Z.G.: Enhanced emission from Li2CaSiO4:Eu2+ phosphors by doping with Y3+. Mater. Lett. 129, 130–133 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhong, J.M., Zhao, W.R., Lan, L.C., Wang, J.Q., Chen, J.H., Wang, N.H.: Enhanced emission from Li2CaSiO4:Eu2+ phosphors by doping with Y3+. J. Alloys Compd. 592, 213–219 (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, Y.L., Zhang, W.T., Chen, X.F., Du, H.Y., Li, J.F., Qiu, K.H.: Influence of Al3+/P5+ ions substitution on the structure and luminescence properties of Sr2SiO4:Eu2+ phosphors for white light emitting diodes. Ceram. Int. 43, 2824–2828 (2017)CrossRefGoogle Scholar
  24. 24.
    Yang, X.J., Zhang, B., Xu, T., Wang, L.X., Shen, J.L., Zhang, Q.T.: Enhanced luminescent intensity of Sr2SiO4:Tb3+ phosphors by charge compensation (Li+) addition. J. Mater. Sci. Mater. Electron. 27, 9448–9453 (2016)CrossRefGoogle Scholar
  25. 25.
    Wang, L.X., Yang, X.J., Zhang, Q.T., Song, B., Wong, C.P.: Luminescence properties of La2O2S:Tb3+ phosphors and phosphor-embedded polymethylmethacrylate films. Mater. Des. 125, 100–108 (2017)CrossRefGoogle Scholar
  26. 26.
    Catti, M., Gazzoni, G., Ivaldi, G., Zanini, G.: The β <-> α′ phase transition of Sr2SiO4. I. Order–disorder in the structure of the α′ form at 383 K. Acta Cryst. B 39, 674–679 (1983)CrossRefGoogle Scholar
  27. 27.
    Madej, A., Zych, E.: Controlled synthesis of the monoclinic and orthorhombic polymorphs of Sr2SiO4 activated with Ce3+ or Eu2+. RSC Adv. 5, 104441–104450 (2015)CrossRefGoogle Scholar
  28. 28.
    Dexter, D.L., Schulman, J.H.: Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954)CrossRefGoogle Scholar
  29. 29.
    Sohn, K., Choi, Y.Y., Park, H.D., Choi, Y.G.: Analysis of Tb3+ luminescence by direct transfer and migration in YPO4. J. Electrochem. Soc. 147, 2375–2379 (2000)CrossRefGoogle Scholar
  30. 30.
    Som, S., Mitra, P., Kumar, V., Terblans, J.J., Swart, H.C., Sharma, S.K.: The energy transfer phenomena and colour tunability in Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans. 43, 9860–9871 (2014)CrossRefGoogle Scholar
  31. 31.
    Shilpa, C.J., Dhananjaya, N., Nagabhushana, H., Sharma, S.C., Shivakumara, C., Sudheerkumar, K.H., Nagabhushana, B.M., Chakradhar, R.P.S.: Gd1.96–xYxEu0.04O3(x = 0.0, 0.49, 0.98, 1.47, 1.96 mol%) nanophosphors: Propellant combustion synthesis, structural and luminescence studies. Spectrochim. Acta A 128, 730–739 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Li, G.G., Geng, D.L., Shang, M.M., Peng, C., Lin, J.: Color-tunable emission and energy transfer in Ca3Gd7(PO4)(SiO4)5O2:Ce3+/Tb3+/Mn2+ phosphors. Inorg. Chem. 51, 11655–11664 (2012)CrossRefGoogle Scholar
  33. 33.
    Xu, M.J., Wang, L.X., Jia, D.Z., Zhao, H.Y.: Photoluminescence properties and energy transfer of color tunable MgZn2(PO4)2:Ce3+, Tb3+ phosphors. Phys. Chem. Chem. Phys. 17, 28802–28808 (2015)CrossRefGoogle Scholar
  34. 34.
    Ding, Y., Wang, L.X., Xu, M.J., Jia, D.Z., Zhou, R.: The energy transfer and thermal stability of a blue-green color tunable K2CaP2O7:Ce3+,Tb3+ phosphor. J. Am. Ceram. Soc. 100, 185–192 (2017)CrossRefGoogle Scholar
  35. 35.
    Blasse, G.: Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444–445 (1968)CrossRefGoogle Scholar
  36. 36.
    Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  37. 37.
    Paulose, P.I., Jose, G., Thomas, V., Unnikrishnan, N.V., Warrier, M.K.R.: Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J. Phys. Chem. Solids 64, 841–846 (2003)CrossRefGoogle Scholar
  38. 38.
    Li, K., Zhang, Y., Li, X.J., Shang, M.M., Lian, H.Z., Lin, J.: Tunable blue-green emission and energy transfer properties in β-Ca3(PO4)2:Eu2+, Tb3+ phosphors with high quantum efficiencies for UV-LEDs. Dalton Trans. 44, 4683–4692 (2015)CrossRefGoogle Scholar
  39. 39.
    Huang, Y.L., Seo, H.J.: A new fluorosilicoborate host for the development of Eu3+-activated red-emitting phosphors. Mater. Lett. 156, 86–89 (2015)CrossRefGoogle Scholar
  40. 40.
    Liu, J.Q., Wang, X.J., Xuan, T.T., Wang, C.B., Li, H.L., Sun, Z.: Lu3(Al, Si)5(O, N)12:Ce3+ phosphors with broad emission band and high thermal stability for white LEDs. J. Lumin. 158, 322–327 (2015)CrossRefGoogle Scholar
  41. 41.
    Liang, S.S., Shang, M.M., Lian, H.Z., Li, K., Zhang, Y., Lin, J.: Deep red MGe4O9:Mn4+ (M = Sr, Ba) phosphors: structure, luminescence properties and application in warm white light emitting diodes. J. Mater. Chem. C 4, 6409–6416 (2016)CrossRefGoogle Scholar
  42. 42.
    He, C., Xia, Z.G., Liu, Q.L.: Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Opt. Mater. 42, 11–16 (2015)CrossRefGoogle Scholar
  43. 43.
    Zhu, G., Ci, Z.P., Shi, Y.R., Que, M.D., Wang, Q., Wang, Y.H.: Synthesis, crystal structure and luminescence characteristics of a novel red phosphor Ca19Mg2(PO4)14:Eu3+ for light emitting diodes and field emission displays. J. Mater. Chem. C 1, 5960–5969 (2013)CrossRefGoogle Scholar
  44. 44.
    Liu, Q., Li, X.B., Zhang, B., Wang, L.X., Zhang, Q.T., Zhang, L.: Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs. Ceram. Int. 42, 15294–15300 (2016)CrossRefGoogle Scholar
  45. 45.
    Zhang, F.F., Song, K.X., Jiang, J., Wu, S., Zheng, P., Huang, Q.M., Xu, J.M., Qin, H.B.: Improvement of photoluminescence properties and thermal stability of Y2.9Ce0.1Al5–xSixO12 phosphors with Si3N4 addition. J. Alloys Compd. 615, 588–593 (2014)CrossRefGoogle Scholar
  46. 46.
    Wang, X., Wang, Y.: Synthesis, structure, and photoluminescence properties of Ce3+-doped Ca2YZr2Al3O12: a novel garnet phosphor for white LEDs. J. Phys. Chem. C 119, 16208–16214 (2015)CrossRefGoogle Scholar
  47. 47.
    Yang, L., Wan, Y.P., Huang, Y.L., Chen, C.L., Seo, H.J.: Development of YK3B6O12:RE(RE = Eu3+, Tb3+, Ce3+) tricolor phosphors under near-UV light excitation. J. Alloys Compd. 684(5), 40–46 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Tianpeng Yu
    • 1
  • Lixi Wang
    • 1
    • 2
    Email author
  • Xiaojuan Yang
    • 1
  • Wenhao Ding
    • 3
  • Qitu Zhang
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjingChina
  3. 3.Institute 53 of China’s Ordnance IndustryJinanChina

Personalised recommendations