Electronic Materials Letters

, Volume 15, Issue 1, pp 1–6 | Cite as

High Performance KNN-Based Single Crystal Thick Film for Ultrasound Application

  • Tao Zhang
  • Jun Ou-Yang
  • Xiaofei Yang
  • Wei WeiEmail author
  • Benpeng ZhuEmail author


Using a novel lapping technology, the achievement of approximately 28 μm (K0.45Na0.55)0.96Li0.04NbO3 (abbreviated as KNLN) single crystal thick film with <001> orientation has been realized. This kind of thick film exhibited excellent electrical performance: a superior piezoelectric constant (~ 490 pm/V) and an outstanding electromechanical coupling coefficient (kt ~ 0.55). Based on the obtained KNLN single crystal thick film, a tiny side-looking 82 MHz ultrasound transducer with a bandwidth of 57.3% at − 6 dB has been successfully fabricated. Most importantly, 80 MHz intravascular ultrasound and photoacoustic images of the healthy rabbit aorta have been presented. All these promising results indicate that KNN-based single crystal thick film is a good environmental protection candidate for high frequency (~ 80 MHz) ultrasound applications.

Graphical Abstract


KNN-based single crystal Thick film Piezoelectric property Electromechanical coupling coefficient Ultrasound 



This work was supported by the Natural Science Foundation of China (Grant No. 11774117, 11574096), the Natural Science Foundation Instrument Project of China (Grant No. 81727805), and the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (Grant No. MCMS-0317G01). We also thank the Analytical and Testing Center of Huazhong University of Science & Technology.


  1. 1.
    Hwang, G.T., Park, H., Lee, J.H., Oh, S., Park, K.I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., Kwon, H., Lee, S.G., Joung, B., Lee, K.J.: Self‐powered cardiac pacemaker enabled by flexible single crystalline PMN‐PT piezoelectric energy harvester. Adv. Mater. 26, 4880 (2014)CrossRefGoogle Scholar
  2. 2.
    Hwang, G.T., Byun, M., Jeong, C.K., Lee, K.J.: Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Mater. 4, 646 (2015)Google Scholar
  3. 3.
    Liang, R.J., Wang, Q.-M.: High sensitivity piezoelectric sensors using flexible PZT thick-film for shock tube pressure testing. Sens. Actuators A. Phys. 235, 317 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhu, B.P., Han, J.X., Shi, J., Shung, K.K., Wei, Q., Huang, Y.H., Kosec, M., Zhou, Q.F.: Lift‐off PMN–PT thick film for high‐frequency ultrasonic biomicroscopy. J. Am. Ceram. Soc. 93, 2929 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhu, B.P., Chan, N.Y., Dai, J.Y., Shung, K.K., Takeuchi, S., Zhou, Q.F.: New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 854 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhu, B.P., Xu, J., Li, Y., Wang, T., Xiong, K., Lee, C.Y., Yang, X.F., Shiiba, M., Takeuchi, S., Zhou, Q.F., Shung, K.K.: Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film. AIP Adv. 6, 035102 (2016)CrossRefGoogle Scholar
  7. 7.
    EU-Directive 2011/65/EU: Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Off. J. Eur. Union 17, 488 (2011)Google Scholar
  8. 8.
    Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M.: Nature. Lead Free Piezoceram. 432, 84 (2004)Google Scholar
  9. 9.
    Yang, J., Zhang, F.Q., Yang, Q.B., Liu, Z.F., Li, Y.X., Liu, Y., Zhang, Q.M.: Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method. Appl. Phys. Lett. 108, 182904 (2016)CrossRefGoogle Scholar
  10. 10.
    Tian, H., Hu, C.P., Meng, X.D., Tan, P., Zhou, Z.X., Li, J., Yang, B.: Top-seeded solution growth and properties of K1−xNaxNbO3 crystals. Cryst. Growth Des. 15, 1180 (2015)CrossRefGoogle Scholar
  11. 11.
    Zhu, B.P., Zhu, Y.H., Yang, J., Ou-Yang, J., Yang, X.F., Li, Y.X., Wei, W.: New Potassium Sodium Niobate Single Crystal with Thickness-independent High-performance for Photoacoustic Angiography of Atherosclerotic Lesion. Sci. Rep. 6, 39679 (2006)CrossRefGoogle Scholar
  12. 12.
    Kalinin, S.V., Rar, A., Jesse, S.: A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 12, 2226 (2006)CrossRefGoogle Scholar
  13. 13.
    Liu, Y.M., Lam, K.H., Shung, K.K., Li, J.Y., Zhou, Q.F.: Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy. J. Appl. Phys. 113, 187205 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhu, B.P., Zhang, Z.Q., Ma, T., Yang, X.F., Li, Y.X., Shung, K.K., Zhou, Q.F.: (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging. Appl. Phys. Lett. 106, 173504 (2015)CrossRefGoogle Scholar
  15. 15.
    Ryu, J., Choi, J.J., Hahn, B.D., Park, D.S., Yoon, W.H., Kim, K.H.: Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 90, 152901 (2007)CrossRefGoogle Scholar
  16. 16.
    Wang, L.Y., Yao, K., Ren, W.: Piezoelectric K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition. Appl. Phys. Lett. 93, 092903 (2008)CrossRefGoogle Scholar
  17. 17.
    Fu, F., Shen, B., Zhai, J.W., Xu, Z.K., Yao, X.: Electrical properties of Li doped sodium potassium niobate thick films prepared by a tape casting process. J. Alloy. Compd. 509, 7130 (2011)CrossRefGoogle Scholar
  18. 18.
    Fu, F., Shen, B., Zhai, J.W., Xu, Z.K., Yao, X.: Influence of Mn2+ on the electrical properties of textured KNN thick films. Ceram. Int. 38S, S287 (2012)CrossRefGoogle Scholar
  19. 19.
    Shiraishi, T., Einishi, H., Yasui, S., Funakubo, H.: Ferroelectric and piezoelectric properties of (K,Na)NbO3 thick films prepared on metal substrates by hydrothermal method. J. Korean Phys. Soc. 62, 1055 (2013)CrossRefGoogle Scholar
  20. 20.
    Pavlic, J., Malic, B., Rojac, T.: Small reduction of the piezoelectric d33 response in potassium sodium niobate thick films. J. Am. Ceram. Soc. 97, 1497 (2014)CrossRefGoogle Scholar
  21. 21.
    Pavlic, J., Malic, B., Rojac, T.: Microstructural, structural, dielectric and piezoelectric properties of potassium sodium niobate thick films. J. Eur. Ceram. Soc. 34, 285 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhou, Q.F., Lam, K.H., Zheng, H.R., Qiu, W.B., Shung, K.K.: Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater Sci. 66, 87 (2014)CrossRefGoogle Scholar
  23. 23.
    Chen, Z.Y., Wu, Y., Yang, Y., Li, J.P., Xie, B.S., Li, X.J., Lei, S., Ou-Yang, J., Yang, X.F., Zhou, Q.F., Zhu, B.P.: Multilayered carbon nanotube yarn based optoacoustic transducer with high energy conversion efficiency for ultrasound application. Nano Energy 46, 314 (2018)CrossRefGoogle Scholar
  24. 24.
    ANSI/IEEE Standard on Piezoelectricity, Std. 176-1987. IEEE, New York (1987)Google Scholar
  25. 25.
    Sun, P., Zhou, Q.F., Zhu, B.P., Wu, D.W., Hu, C.H., Cannata, J.M., Tian, J., Han, P.D., Wang, G.F., Shung, K.K.: Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 2760 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.Hubei Cancer HospitalHuazhong University of Science and TechnologyWuhanChina
  3. 3.Engineering Research Center for Functional Ceramics, Ministry of EducationHuazhong University of Science and TechnologyWuhanChina
  4. 4.State Key Laboratory of Transducer TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations