Electronic Materials Letters

, Volume 15, Issue 1, pp 133–139 | Cite as

Effect of Temperature on Coalescence Behavior of Unsupported Gold Nanoparticles

  • Kayoung Yun
  • Jaegab Lee
  • Ho-Seok NamEmail author


The coalescing behavior of gold nanoparticles was studied by employing molecular dynamics simulations based on a semi-empirical embedded-atom method. Investigations on the coalescing process of the faceted nanoparticles revealed that at relatively low-temperatures, plastic deformation by slip motion was the main mechanism of coalescence, while near the melting point, coalescence was preceded by local fluid motion. Different initial configuration and coalescing temperature have a substantial influence on the coalescing behavior, making different final structures such as twinned face-centered cubic or amorphous nanoparticles.

Graphical Abstract


Nanoparticle Coalescence Molecular dynamics simulations 



This work was supported by Basic Science Research Program (2017R1A2B4012871), Leading Foreign Research Institute Recruitment Program (2013K1A4A3055679), and the Priority Research Centers Program (2009-0093814) through the National Research Foundation of Korea (NRF).


  1. 1.
    Arcidiacono, S., Bieri, N., Poulikakos, D., Grigoropoulos, C.: On the coalescence of gold nanoparticles. Int. J. Multiph. Flow 30, 979–994 (2004)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Chen, S., Cui, K., Li, D., Chen, D.: Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano 10, 2893–2902 (2016)CrossRefGoogle Scholar
  3. 3.
    Ingham, B., Lim, T.H., Dotzler, C.J., Henning, A., Toney, M.F., Tilley, R.D.: How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312–3317 (2011)CrossRefGoogle Scholar
  4. 4.
    de Heer, W.A.: The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611 (1993)CrossRefGoogle Scholar
  5. 5.
    Jensen, P.: Growth of nanostructures by cluster deposition: experiments and simple models. Rev. Mod. Phys. 71, 1695 (1999)CrossRefGoogle Scholar
  6. 6.
    Buffat, P.-A., Flueli, M., Spycher, R., Stadelmann, P., Borel, J.-P.: Crystallographic structure of small gold particles studied by high-resolution electron microscopy. Faraday Discuss. 92, 173–187 (1991)CrossRefGoogle Scholar
  7. 7.
    Reinhard, D., Hall, B.D., Ugarte, D., Monot, R.: Size-independent fcc-to-icosahedral structural transition in unsupported silver clusters: an electron diffraction study of clusters produced by inert-gas aggregation. Phys. Rev. B 55, 7868 (1997)CrossRefGoogle Scholar
  8. 8.
    Reinhard, D., Hall, B.D., Berthoud, P., Valkealahti, S., Monot, R.: Size-dependent icosahedral-to-fcc structure change confirmed in unsupported nanometer-sized copper clusters. Phys. Rev. Lett. 79, 1459 (1997)CrossRefGoogle Scholar
  9. 9.
    Reinhard, D., Hall, B.D., Berthoud, P., Valkealahti, S., Monot, R.: Unsupported nanometer-sized copper clusters studied by electron diffraction and molecular dynamics. Phys. Rev. B 58, 4917 (1998)CrossRefGoogle Scholar
  10. 10.
    Baletto, F., Mottet, C., Ferrando, R.: Reentrant morphology transition in the growth of free silver nanoclusters. Phys. Rev. Lett. 84, 5544 (2000)CrossRefGoogle Scholar
  11. 11.
    Baletto, F., Mottet, C., Ferrando, R.: Microscopic mechanisms of the growth of metastable silver icosahedra. Phys. Rev. B 63, 155408 (2001)CrossRefGoogle Scholar
  12. 12.
    Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986)CrossRefGoogle Scholar
  13. 13.
    Johnson, R.A.: Analytic nearest-neighbor model for fcc metals. Phys. Rev. B 37, 3924 (1988)CrossRefGoogle Scholar
  14. 14.
    Plimpton, S., Crozier, P., Thompson, A.: LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl. Lab. 18, 43 (2007)Google Scholar
  15. 15.
    Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)CrossRefGoogle Scholar
  16. 16.
    Sastry, S., Debenedetti, P.G., Stillinger, F.H.: Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998)CrossRefGoogle Scholar
  17. 17.
    Steinhardt, P.J., Nelson, D.R., Ronchetti, M.: Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983)CrossRefGoogle Scholar
  18. 18.
    ten Wolde, P.R., Ruiz-Montero, M.J., Frenkel, D.: Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714 (1995)CrossRefGoogle Scholar
  19. 19.
    Chushak, Y., Bartell, L.: Molecular dynamics simulations of the freezing of gold nanoparticles. Eur. Phys. J D At. Mol. Opt. Plasma Phys. 16, 43 (2001)Google Scholar
  20. 20.
    van de Waal, B.W.: No evidence for size-dependent icosahedral → fcc structural transition in rare-gas clusters. Phys. Rev. Lett. 76, 1083 (1996)CrossRefGoogle Scholar
  21. 21.
    Lewis, L.J., Jensen, P., Barrat, J.-L.: Melting, freezing, and coalescence of gold nanoclusters. Phys. Rev. B 56, 2248 (1997)CrossRefGoogle Scholar
  22. 22.
    Nam, H.-S., Hwang, N.-M., Yu, B.D., Yoon, J.-K.: Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. Phys. Rev. Lett. (2002). Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKookmin UniversitySeoulKorea
  2. 2.Computational Science Research CenterKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations