Electronic Materials Letters

, Volume 14, Issue 5, pp 599–609 | Cite as

1.4 µm-Thick Transparent Radio Frequency Transmission Lines Based on Instant Fusion of Polyethylene Terephthalate Through Surface of Ag Nanowires

  • Sang-Woo Kim
  • Kwang-Seok Kim
  • Myeongkoo Park
  • Wansoo Nah
  • Dae Up Kim
  • Cheul-Ro Lee
  • Seung-Boo JungEmail author
  • Jong-Woong KimEmail author


Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency.

Graphical Abstract


Flash light Photoinduced Ag nanowires Radio frequency Transmission circuits 



This work was supported by a National Research Foundation of Korea (NRF) grant [number 2015R1A4A1042417] funded by the Korean government (MSIP). Further support was also provided by the Ministry of Trade, Industry and Energy, Republic of Korea [grant number N0002310] and the Korea Institute of Industrial Technology as “Characteristics of VO2 Nanoink and Intense Pulsed Light Low-Temperature Sintering for Flexible Smart Window Films Using Direct Printing Technology [kitech EO-17-0026]”.


  1. 1.
    Webb, R.C., Bonifas, A.P., Behnaz, A., Zhang, Y., Yu, K.J., Cheng, H., Shi, M., Bian, Z., Liu, Z., Kim, Y.-S.: Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938 (2013)CrossRefGoogle Scholar
  2. 2.
    Lee, S., Reuveny, A., Reeder, J., Lee, S., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y., Suo, Z., Someya, T.: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472 (2016)CrossRefGoogle Scholar
  3. 3.
    Hwang, B.U., Lee, J.H., Trung, T.Q., Roh, E., Kim, D.I., Kim, S.W., Lee, N.E.: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9, 8801–8810 (2015)CrossRefGoogle Scholar
  4. 4.
    Ho, M.D., Ling, Y., Yap, L.W., Wang, Y., Dong, D., Zhao, Y., Cheng, W.: Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 27, 1700845 (2017)CrossRefGoogle Scholar
  5. 5.
    Trung, T.Q., Ramasundaram, S., Hwang, B.U., Lee, N.E.: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016)CrossRefGoogle Scholar
  6. 6.
    You, B., Kim, Y., Ju, B.K., Kim, J.W.: Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode. ACS Appl. Mater. Interfaces 9, 5486–5494 (2017)CrossRefGoogle Scholar
  7. 7.
    Krantz, J., Stubhan, T., Richter, M., Spallek, S., Litzov, I., Matt, G.J., Spiecker, E., Brabec, C.J.: Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv. Funct. Mater. 23, 1711–1717 (2013)CrossRefGoogle Scholar
  8. 8.
    Wu, H., Kong, D., Ruan, Z., Hsu, P.-C., Wang, S., Yu, Z., Carney, T.J., Hu, L., Fan, S., Cui, Y.: A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8, 421–425 (2013)CrossRefGoogle Scholar
  9. 9.
    Pang, S., Hernandez, Y., Feng, X., Müllen, K.: Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 2779–2795 (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, S.M., Byeon, H.J., Lee, J.H., Baek, D.H., Lee, K.H., Hong, J.S., Lee, S.H.: Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 4, 6074 (2014)CrossRefGoogle Scholar
  11. 11.
    Han, C.J., Park, B.-G., Oh, M.S., Jung, S.-B., Kim, J.-W.: Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors. J. Mater. Chem. C 5, 9986–9994 (2017)CrossRefGoogle Scholar
  12. 12.
    Song, L., Myers, A.C., Adams, J.J., Zhu, Y.: Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6, 4248–4253 (2014)CrossRefGoogle Scholar
  13. 13.
    Kaltenbrunner, M., White, M.S., Głowacki, E.D., Sekitani, T., Someya, T., Sariciftci, N.S., Bauer, S.: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012)CrossRefGoogle Scholar
  14. 14.
    White, M.S., Kaltenbrunner, M., Głowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S., Sariciftci, N.S.: Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013)CrossRefGoogle Scholar
  15. 15.
    Reuveny, A., Lee, S., Yokota, T., Fuketa, H., Siket, C.M., Lee, S., Sekitani, T., Sakurai, T., Bauer, S., Someya, T.: High-frequency, conformable organic amplifiers. Adv. Mater. 28, 3298–3304 (2016)CrossRefGoogle Scholar
  16. 16.
    Melzer, M., Kaltenbrunner, M., Makarov, D., Karnaushenko, D., Karnaushenko, D., Sekitani, T., Someya, T., Schmidt, O.G.: Imperceptible magnetoelectronics. Nat. Commun. 6, 6080 (2015)CrossRefGoogle Scholar
  17. 17.
    Hayata, H., Okamoto, M., Takeoka, S., Iwase, E., Fujie, T., Iwata, H.: Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device. Jpn. J. Appl. Phys. 56, 05EC01 (2017)CrossRefGoogle Scholar
  18. 18.
    Kaltenbrunner, M., Sekitan, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., Someya, T.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013)CrossRefGoogle Scholar
  19. 19.
    Elwi, T.A., Al-Rizzo, H.M., Rucker, D.G., Dervishi, E., Li, Z., Biris, A.S.: Multi-walled carbon nanotube-based RF antennas. Nanotechnology 21, 045301 (2010)CrossRefGoogle Scholar
  20. 20.
    Huang, X., Leng, T., Zhu, M., Zhang, X., Chen, J., Chang, K., Aqeeli, M., Geim, A.K., Novoselov, K.S., Hu, Z.: Highly flexible and conductive printed graphene for wireless wearable communications applications. Sci. Rep. 5, 18298 (2016)CrossRefGoogle Scholar
  21. 21.
    Komoda, N., Nogi, M., Suganuma, K., Kohno, K., Akiyama, Y., Otsuka, K.: Printed silver nanowire antennas with low signal loss at high-frequency radio. Nanoscale 4, 3148–3153 (2012)CrossRefGoogle Scholar
  22. 22.
    Kim, Y., Ryu, T.I., Ok, K.-H., Kwak, M.-G., Park, S., Park, N.-G., Han, C.J., Kim, B.S., Ko, M.J., Son, H.J., Kim, J.-W.: Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580–4589 (2015)CrossRefGoogle Scholar
  23. 23.
    Ok, K.-H., Kim, J., Park, S.-R., Kim, Y., Lee, C.-J., Hong, S.-J., Kwak, M.-G., Kim, N., Han, C.J., Kim, J.-W.: Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 5, 9464 (2015)CrossRefGoogle Scholar
  24. 24.
    Ni, H., Liu, J., Wang, Z., Yang, S.: A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J. Ind. Eng. Chem. 28, 16–27 (2015)CrossRefGoogle Scholar
  25. 25.
    Jun, S., Han, C.J., Kim, Y., Ju, B.-K., Kim, J.-W.: A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor. J. Mater. Chem. A 5, 3221–3229 (2017)CrossRefGoogle Scholar
  26. 26.
    Gotoh, K., Yasukawa, A., Kobayashi, Y.: Wettability characteristics of poly(ethylene terephthalate) films treated by atmospheric pressure plasma and ultraviolet excimer light. Polym. J. 43, 545–551 (2011)CrossRefGoogle Scholar
  27. 27.
    Perez-Roldan, M.J., Debarnot, D., Poncin-Epaillard, F.: Processing of plasma-modified and polymer-grafted hydrophilic PET surfaces, and study of their aging and bioadhesive properties. RSC Adv. 4, 31409–31415 (2014)CrossRefGoogle Scholar
  28. 28.
    Jun, S., Ju, B.-K., Kim, J.-W.: Ultra-facile fabrication of stretchable and transparent capacitive sensor employing photo-assisted patterning of silver nanowire networks. Adv. Mater. Technol. 1, 1600062 (2016)CrossRefGoogle Scholar
  29. 29.
    Govorov, A.O., Richardson, H.H.: Generating heat with metal nanoparticles. Nanotoday 2, 30–38 (2007)CrossRefGoogle Scholar
  30. 30.
    Garnett, E.C., Cai, W., Cha, J.J., Mahmood, F., Connor, S.T., Christoforo, M.G., Cui, Y., McGehee, M.D., Brongersma, M.L.: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012)CrossRefGoogle Scholar
  31. 31.
    Song, C.H., Han, C.J., Ju, B.K., Kim, J.W.: Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices. ACS Appl. Mater. Interfaces. 8, 480–489 (2016)CrossRefGoogle Scholar
  32. 32.
    Jiu, J., Nogi, M., Sugahara, T., Tokuno, T., Araki, T., Komoda, N., Suganuma, K., Uchida, H., Shinozaki, K.: Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J. Mater. Chem. 22, 23561–23567 (2012)CrossRefGoogle Scholar
  33. 33.
    Jiu, J., Sugahara, T., Nogi, M., Araki, T., Suganuma, K., Uchida, H., Shinozaki, K.: High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: the effect of the thermal properties of substrates on the performance of silver films. Nanoscale 5, 11820–11828 (2013)CrossRefGoogle Scholar
  34. 34.
    Pyo, K., Lee, D.H., Kim, Y., Kim, J.-W.: Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels–Alder network. J. Mater. Chem. C 4, 972–977 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.SKKU Advanced Institute of Nano TechnologySungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Carbon and Light Materials Application GroupKorea Institute of Industrial TechnologyJeonjuRepublic of Korea
  3. 3.College of Information and Communication EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  4. 4.School of Advanced Materials EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  5. 5.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations