Advertisement

Electronic Materials Letters

, Volume 14, Issue 5, pp 587–593 | Cite as

Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles

  • R. Zahid
  • M. Manzoor
  • A. Rafiq
  • M. Ikram
  • M. Nafees
  • A. R. Butt
  • S. G. Hussain
  • S. Ali
Article
  • 123 Downloads

Abstract

In this study, various concentrations of Fe doped TiO2 nanoparticles have been successfully synthesized using the sol–gel method. A variety of characterization techniques as ultra-violet visible (UV–Vis) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometry (VSM) and field emission scanning electron microscopy (FESEM) were employed to analyze the prepared nanopowders. XRD measurement confirmed the substitution of Fe ion without disturbing the tetragonal crystal system of TiO2. The crystallite size was found to decrease and lattice strain increases upon doping estimated by Williamson Hall plot. Furthermore, the average grain size calculated by FESEM found was between 10 and 30 nm for pure and doped TiO2. UV–Vis spectroscopy showed an increase in absorption accompanied red shift and increase in band gap energies from 3.36 to 3.62 eV with the addition of Fe. The FTIR spectroscopy was employed to confirm the presence of functional groups in the fabricated nanopowders. Upon mixing the saturation magnetization (Ms) varying from (2.12 to 1.51)10−2 emu/g was observed.

Keywords

Doping Fe TiO2 Nanoparticle VSM Sample 

Notes

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC) Pakistan, for the financial support.

References

  1. 1.
    Dietl, T., Tomasz, H., Ohno, F., Matsukura, J.Cibert, Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)CrossRefGoogle Scholar
  2. 2.
    Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004)CrossRefGoogle Scholar
  3. 3.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Yu Chtchelkanova, A., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)CrossRefGoogle Scholar
  4. 4.
    Chambers, S.A., Farrow, R.F.C.: New possibilities for ferromagnetic semiconductors. MRS Bull. 28, 729 (2003)CrossRefGoogle Scholar
  5. 5.
    Bryan, J.D., Gamelin, D.R.: Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications. Prog. Inorg. Chem. 54(47), 47–126 (2005)CrossRefGoogle Scholar
  6. 6.
    Zhao, Z.W., Tay, B.K., Chen, J.S., Hu, J.F., Lim, B.C., Li, G.P.: Large magnetic moment observed in Co-doped ZnO nanocluster-assembled thin films at room temperature. Appl. Phys. Lett. 90, 152502 (2007)CrossRefGoogle Scholar
  7. 7.
    Calle, A.M., Sanchez, L.C., Arboleda, J.D., Beltran, J.J., Barrero, C.A., Osorio, J., Nomura, K.: Mixtures of iron and anatase TiO2 by mechanical alloying. Microelectron. J. 39, 1322 (2008)CrossRefGoogle Scholar
  8. 8.
    Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000)CrossRefGoogle Scholar
  9. 9.
    Reddy, B.M., Ganesh, I., Khan, A.: Stabilization of nanosized titania-anatase for high temperature catalytic applications. J. Mol. Catal. A Chem. 223, 295 (2004)CrossRefGoogle Scholar
  10. 10.
    Yu, J., Xiang, Q., Zhou, M.: Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl. Catal. B Environ. 90, 595 (2009)CrossRefGoogle Scholar
  11. 11.
    Yuji, M., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001)CrossRefGoogle Scholar
  12. 12.
    Hong, N.H., Sakai, J., Prellier, W., Hassini, A., Ruyter, A., Gervais, F.: Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B 70, 195204 (2004)CrossRefGoogle Scholar
  13. 13.
    Chen, J., Rulis, P., Ouyang, L., Satpathy, S., Ching, W.Y.: Vacancy-enhanced ferromagnetism in Fe-doped rutile TiO2. Phys. Rev. B 74, 235207 (2006)CrossRefGoogle Scholar
  14. 14.
    Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)CrossRefGoogle Scholar
  15. 15.
    Dhanapandian, S., Arunachalam, A., Manoharan, C.: Highly oriented and physical properties of sprayed anatase Sn-doped TiO2 thin films with an enhanced antibacterial activity. Appl. Nanosci. 6, 387 (2016)CrossRefGoogle Scholar
  16. 16.
    Mugundan, S., Rajamannan, B., Virothagiri, G., Shanmugam, N., Gobi, R., Praveen, P.: Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5, 449 (2015)CrossRefGoogle Scholar
  17. 17.
    Jianping, X., Shi, S., Li, L., Zhang, X., Wang, Y., Chen, X., Wang, J., Lv, L., Zhang, F., Zhong, W.: Structural, optical, and ferromagnetic properties of Co-doped TiO2 films annealed in vacuum. J. Appl. Phys. 107, 053910 (2010)CrossRefGoogle Scholar
  18. 18.
    Rumaiz, A.K., Bakhtyar, A., Ceylan, A., Boggs, M., Beebe, T., Ismat, S.: Shah, Experimental studies on vacancy induced ferromagnetism in undoped TiO2. Solid State Commun. 144, 334 (2007)CrossRefGoogle Scholar
  19. 19.
    Grecu, M.N., Constantinescu, S., Tărăbăşanu-Mihăilă, D., Ghica, D., Bibicu, I.: Spin dynamics in 57Fe-doped TiO2 anatase nanoparticles. Phys. Status Solidi (b) 248, 2927 (2011)CrossRefGoogle Scholar
  20. 20.
    Grecu, M.N., Macovei, D., Ghica, D., Logofatu, C., Valsan, S., Apostol, N.G., Lungu, G.A., Negrea, R.F., Piticescu, R.R.: Co environment and magnetic defects in anatase CoxTi1−xO2 nanopowders. Appl. Phys. Lett. 102, 161909 (2013)CrossRefGoogle Scholar
  21. 21.
    Dinkar, V.A., Shridhar, S.J.: Synthesis, characterization, and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol–gel method. Appl. Nanosci. 6, 965 (2016)CrossRefGoogle Scholar
  22. 22.
    Pereira, L.C.J., Nunes, M.R., Monteiro, O.C., Silvestre, A.J.: Magnetic properties of Co-doped TiO2 anatase nanopowders. Appl. Phys. Lett. 93, 222502 (2008)CrossRefGoogle Scholar
  23. 23.
    Kaspar, T.C., Droubay, T., Heald, S.M., Engelhard, M.H., Nachimuthu, P., Chambers, S.A.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77, 201303 (2008)CrossRefGoogle Scholar
  24. 24.
    Rao, B.K., Jena, P.: Giant magnetic moments of nitrogen-doped Mn clusters and their relevance to ferromagnetism in Mn-doped GaN. Phys. Rev. Lett. 89, 185504 (2002)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Shen, Y., Gu, F., Wu, M., Xie, Y., Zhang, J.: Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Appl. Surf. Sci. 256, 85 (2009)CrossRefGoogle Scholar
  26. 26.
    Hiromi, Y., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., Anpo, M.: Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal.Today 84, 191 (2003)CrossRefGoogle Scholar
  27. 27.
    Dholam, R., Patel, N., Adami, M., Miotello, A.: Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energy 34, 5337 (2009)CrossRefGoogle Scholar
  28. 28.
    Calle, A.M., Sanchez, L.C., Arboleda, J.D., Beltran, J.J., Barrero, C.A., Osorio, J., Nomura, K.: Mixtures of iron and anatase TiO2 by mechanical alloying. Microelectron. J. 39, 1322 (2008)CrossRefGoogle Scholar
  29. 29.
    Ikram, M., Niaz, N.A., Khalid, N.R., Ramzan, M., Imran, M., Ali, S.: Tetra blended based hybrid bulk heterojunction solar cells. J. Ovonic Res. 10, 257 (2014)Google Scholar
  30. 30.
    Ali, A., Zafar, H., Zia, M., Haq, I., Rehman Phull, A., Ali, J.S., Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016)CrossRefGoogle Scholar
  31. 31.
    Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., Oskam, G.: Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y.H., Reller, A.: Nanocrystalline iron-doped mesoporous titania and its phase transition. J. Mater. Chem. 11, 2537 (2001)CrossRefGoogle Scholar
  33. 33.
    Jiefang, Z., Zheng, W., He, B., Zhang, J., Anpo, M.: Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A Chem. 216, 35 (2004)CrossRefGoogle Scholar
  34. 34.
    Wang, C., Böttcher, C., Bahnemann, D.W., Dohrmann, J.K.: A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J. Mater. Chem. 13, 2322 (2003)CrossRefGoogle Scholar
  35. 35.
    Masanori, H., Joji, T., Inagaki, M., Iwata, H.: Direct formation of iron(III)-doped titanium oxide (anatase) by thermal hydrolysis and its structural property. J. Am. Ceramic Soc. 87, 35 (2008)Google Scholar
  36. 36.
    Alexandrescu, R., Birjega, R., Popovici, E., Soare, I., Gavrila-Florescu, L., Voicu, I., Sandu, I., Dumitrache, F., Prodan, G., Vasile, E., Figgemeier, E.: Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films 515, 8438 (2007)CrossRefGoogle Scholar
  37. 37.
    Zhang, X., Zhou, M., Lei, L.: Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 7, 427 (2006)CrossRefGoogle Scholar
  38. 38.
    Song, L., Liu, X., Chen, Y., Jiang, R.: A novel preparation of highly active iron-doped titania photocatalysts with a p–n junction semiconductor structure. J. Alloys Compounds. 506, 877 (2010)CrossRefGoogle Scholar
  39. 39.
    Ranjit KT, Viswanathan B (1997) J Photochem. Photobiol. A Chem. 108: 79Google Scholar
  40. 40.
    Cernea, M., Valsangiacom, C., Trusca, R., Vasiliu, F.: Synthesis of iron-doped anatase-TiO2 powders by a particulate sol–gel route. J. Optoelectron. Adv. Mater. 9, 2648 (2007)Google Scholar
  41. 41.
    Dholam, R., Patel, N., Adami, M., Miotello, A.: Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34, 5337 (2009)CrossRefGoogle Scholar
  42. 42.
    Reyes-Rojasa, A., Esparza-Poncea, H., De la Torre, S.D., Torres-Moye, E.: Compressive strain-dependent bending strength property of Al2O3–ZrO2 (1.5 mol% Y2O3) composites performance by HIP. Mater. Chem. Phys. 114, 756 (2009)CrossRefGoogle Scholar
  43. 43.
    KantiKole, A., Kumbhakar, P.: Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Results Phys. 2, 150 (2012)CrossRefGoogle Scholar
  44. 44.
    Ghosh, A., Kumari, N., Tewari, S., Bhattacharjee, A.: Structural and optical properties of pure and Al doped ZnO nanocrystalsIndian. J. Phys. 87, 1099 (2013)Google Scholar
  45. 45.
    Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolframL’elargissement des raies de rayons x obtenues des limailles d’aluminium et de tungsteneDie verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen. Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  46. 46.
    Nafees, M., Liaqut, W., Ali, S., Shafique, M.A.: Synthesis of ZnO/Al: ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping. Appl. Nanosci. 3, 49 (2013)CrossRefGoogle Scholar
  47. 47.
    Hong, N.H., Sakai, J., Pellier, W.: Distribution of dopant in Fe:TiO2 and Ni:TiO2 thin films. J. Mag. Mag. Mater. 281, 347 (2004)CrossRefGoogle Scholar
  48. 48.
    Thu, D.X., Trung, V.Q., Nghia, N.M., Khang, N.C., Lam, T.D.: Effects of Fe doping on the structural, optical, and magnetic properties of TiO2 nanoparticles. J. Electr. Mater. 45, 11 (2016)Google Scholar
  49. 49.
    Zhang, Yu-Hong, Reller, Armin: Nanocrystalline iron-doped mesoporous titania and its phase transition. J. Mater. Chem. 11, 2537 (2001)CrossRefGoogle Scholar
  50. 50.
    Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L.: Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Sci. Iranica 20, 1018 (2013)Google Scholar
  51. 51.
    Hong, N.H., Sakai, J., Prellier, W.: Distribution of dopant in Fe:TiO2 and Ni:TiO2 thin films. J. Magn. Mag. Mater. 281, 347–352 (2004)CrossRefGoogle Scholar
  52. 52.
    Cernea, M., Valsangiacom, C., Truscaa, R., Vasiliu, F.: Synthesis of iron-doped anatase-TiO2 powders by a particulate sol-gel route. J. Optoelectr. Adv. Mater. 9, 2648 (2007)Google Scholar
  53. 53.
    Hung, W.-C., Chen, Y.-C., Chu, H., Tseng, T.-K.: Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane. Appl. Surf. Sci. 255, 2205–2213 (2008)CrossRefGoogle Scholar
  54. 54.
    Luu, C.L., Nguyen, Q.T., Ho, S.T., Tseng, T.-K.: Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method. Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 015008 (2010)CrossRefGoogle Scholar
  55. 55.
    da Santos, R.S., Faria, G.A., Giles, C., Leite, C.A.P., de Barbosa, H.S., Arruda, M.A.Z., Longo, C.: Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol–gel and hydrothermal method. ACS Appl. Mater. Interfaces 4, 5555 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • R. Zahid
    • 1
  • M. Manzoor
    • 1
  • A. Rafiq
    • 1
    • 2
  • M. Ikram
    • 2
  • M. Nafees
    • 1
  • A. R. Butt
    • 1
  • S. G. Hussain
    • 4
  • S. Ali
    • 1
    • 2
    • 3
  1. 1.Material and Nano Science Research Lab (MNRL), Department of PhysicsGovernment College UniversityLahorePakistan
  2. 2.Solar Cell Applications Research Lab, Department of PhysicsGovernment College UniversityLahorePakistan
  3. 3.Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS)Riphah International UniversityLahorePakistan
  4. 4.Department of PhysicsKing Faisal UniversityAl-AhsaSaudi Arabia

Personalised recommendations