Thermomechanical In Situ Monitoring of Bi2Te3 Thin Film and Its Relationship with Microstructure and Thermoelectric Performances

Article

Abstract

Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.

Graphical Abstract

Keywords

Bi2Te3 In situ thermomechanical analysis Quintuple layer Thermoelectric Thin film 

Notes

Acknowledgements

This research was supported by the MOTIE(Ministry of Trade, Industry & Energy [10049130] and KSRC(Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device.

References

  1. 1.
    Lin, J.-M., Chen, Y.-C., Lin, C.-P.: Annealing effect on the thermoelectric properties of Bi2Te3 thin films prepared by thermal evaporation method. J. Nanomater. 2013, 1 (2013)Google Scholar
  2. 2.
    Wang, X., He, H., Wang, N., Miao, L.: Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Appl. Surf. Sci. 276, 539 (2013)CrossRefGoogle Scholar
  3. 3.
    Bailini, A., Donati, F., Zamboni, M., Russo, V., Passoni, M., Casari, C.S., Li Bassi, A., Bottani, C.E.: Pulsed laser deposition of Bi2Te3 thermoelectric films. Appl. Surf. Sci. 254(4), 1249 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.L., Analytis, J.G., Chu, J.-H., Liu, Z.K., Mo, S.-K., Qi, X.L., Zhang, H.J., Lu, D.H., Dai, X., Fang, Z., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z.-X.: Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325(5937), 178 (2009)CrossRefGoogle Scholar
  5. 5.
    Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235 (2009)CrossRefGoogle Scholar
  6. 6.
    Liu, W., Yan, X., Chen, G., Ren, Z.: Recent advances in thermoelectric nanocomposites. Nano Energy 1(1), 42 (2012)CrossRefGoogle Scholar
  7. 7.
    Li, J.-F., Liu, W.-S., Zhao, L.-D., Zhou, M.: High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152 (2010)CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Liu, H.J., Cheng, L., Wei, J., Shi, J., Tang, X.F., Uher, C.: Enhanced thermoelectric performance of a quintuple layer of Bi2Te3. J. Appl. Phys. 116(2), 023706 (2014)CrossRefGoogle Scholar
  9. 9.
    Jeon, S.-J., Jeon, H., Na, S., Kang, S.D., Lyeo, H.-K., Hyun, S., Lee, Hoo.-Jeong.: Microstructure evolution of sputtered BiSb–Te thermoelectric films during post-annealing and its effects on the thermoelectric properties. J. Alloys Compd. 553, 343 (2013)CrossRefGoogle Scholar
  10. 10.
    Bourgault, D., Garampon, C.G., Caillault, N., Carbone, L., Aymami, J.A.: Thermoelectric properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films deposited by direct current magnetron sputtering. Thin Solid Films 516(23), 8579 (2008)CrossRefGoogle Scholar
  11. 11.
    Wuttig, M., Salinga, M.: Phase-change materials: Fast transformers. Nat. Mater. 11(4), 270 (2012)CrossRefGoogle Scholar
  12. 12.
    Feutelais, Y., Legendre, B., Rodier, N., Agafonov, V.: A study of the phases in the bismuth - tellurium system. Mater. Res. Bull. 28(6), 591 (1993)CrossRefGoogle Scholar
  13. 13.
    Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20(11), 2217 (1989)CrossRefGoogle Scholar
  14. 14.
    Han, N., Kim, S.I., Yang, J.D., Lee, K., Sohn, H., So, H.M., Ahn, C.W., Yoo, K.H.: Phase-change memory in Bi2Te3 nanowires. Adv. Mater. 23(16), 1871 (2011)CrossRefGoogle Scholar
  15. 15.
    Wang, C., Zhu, X., Nilsson, L., Wen, J., Wang, G., Shan, X., Zhang, Q., Zhang, S., Jia, J., Xue, Q.: In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Res. 6(9), 688 (2013)CrossRefGoogle Scholar
  16. 16.
    Souza, S.M., Triche, D.M., Poffo, C.M., de Lima, J.C., Grandi, T.A., de Biasi, R.S.: Structural, thermal, optical, and photoacoustic study of nanocrystalline Bi2Te3 produced by mechanical alloying. J. Appl. Phys. 109(1), 013512 (2011)CrossRefGoogle Scholar
  17. 17.
    Ren, L., Qi, X., Liu, Y., Hao, G., Huang, Z., Zou, X., Yang, L., Li, J., Zhong, J.: Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J. Mater. Chem. 22(11), 4921 (2012)CrossRefGoogle Scholar
  18. 18.
    Oh, M.W., Son, J.H., Kim, B.S., Park, S.D., Min, B.K., Lee, H.W.: Antisite defects in n-type Bi2(Te,Se)3: Experimental and theoretical studies. J. Appl. Phys. 115(13), 133706 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations