Facile Synthesis of 1D/2D Core–Shell Structured Sb2S3@MoS2 Nanorods with Enhanced Photocatalytic Performance
- 307 Downloads
- 1 Citations
Abstract
Herein, a novel core–shell heterojunction structure of molybdenum disulfide (MoS2) nanosheets coated antimony trisulfide (Sb2S3) nanorods (Sb2S3@MoS2) are designed and fabricated by a two-step hydrothermal method. The Sb2S3@MoS2 heterostructure consists of one-dimension (1D) Sb2S3 nanorods coated by two-dimension (2D) MoS2 nanosheets. When utilized as a photocatalyst under simulated sunlight, compared with pure Sb2S3 nanorods and MoS2 nanosheets, Sb2S3@MoS2 nanorods perform an enhanced photoactivity in degrading Rhodamine B (RhB) with a decomposition efficiency of ~ 99%. The excellent photocatalytic property is attributed to the properly constructed heterojunction between Sb2S3 and MoS2, which can broaden the photoadsorption range. Furthermore, not only can the unique hybrid 1D/2D core–shell structures possess more reaction active sites, but also the compact interfaces between Sb2S3 and MoS2 provide rapid charge transfer channels for charge separation.
Keywords
Sb2S3@MoS2 nanorods Core–shell structure Enhanced photoactivityNotes
Acknowledgements
This work was supported by National Natural Science Foundation of China (No: 51602193).
Supplementary material
References
- 1.Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
- 2.Torres-Perez, J., Gerente, C., Andres, Y.: Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal. J. Environ. Sci. Health. 47, 1173 (2012)CrossRefGoogle Scholar
- 3.Serpone, N., Emeline, A.: Semiconductor photocatalysis-past, present, and future outlook. J. Phys. Chem. Lett. 3, 673 (2012)CrossRefGoogle Scholar
- 4.Poddar, M.K., Sharma, S., Moholkar, V.S.: Investigations in two-step ultrasonic synthesis of PMMA/ZnO nanocomposites by in–situ emulsion polymerization. Polymer 99, 453 (2016)CrossRefGoogle Scholar
- 5.Zhang, W., Sun, Y., Xiao, Z., Li, W., Li, B., Huang, X., Liu, X., Hu, J.: Heterostructures of CuS nanoparticle/ZnO nanorod arrays on carbon fibers with improved visible and solar light photocatalytic properties. J. Mater. Chem. A 3, 7304 (2015)CrossRefGoogle Scholar
- 6.Lu, M., Shao, C., Wang, K., Lu, N., Zhang, X., Zhang, P., Zhang, M., Li, X., Liu, Y.: p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions controlled fabrication and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 12, 9004 (2014)CrossRefGoogle Scholar
- 7.Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., Wang, X.: Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014)CrossRefGoogle Scholar
- 8.Li, D., Xue, J., Bai, X.: Synthesis of ZnWO4/CdWO4 core–shell structured nanorods formed by an oriented attachment mechanism with enhanced photocatalytic performances. CrystEngComm 18, 309 (2016)CrossRefGoogle Scholar
- 9.Sun, M., Li, D., Li, W., Chen, Y., Chen, Z., He, Y., Fu, X.: New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C 112, 18076 (2008)CrossRefGoogle Scholar
- 10.Han, Q., Sun, S., Sun, D., Zhu, J., Wang, X.: Room-temperature synthesis from molecular precursors and photocatalytic activities of ultralong Sb2S3 nanowires. RSC Adv. 1, 1364 (2011)CrossRefGoogle Scholar
- 11.Zhang, H., Hu, C., Ding, Y., Lin, Y.: Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO. J. Alloys Compd. 625, 90 (2015)CrossRefGoogle Scholar
- 12.Tao, W., Chang, J., Wu, D., Gao, Z., Duan, X., Xu, F., Jiang, K.: Solvothermal synthesis of graphene-Sb2S3 composite and the degradation activity under visible light. Mater. Res. Bull. 48, 538 (2013)CrossRefGoogle Scholar
- 13.Tiwari, J.P., Shang, K.: Mechanochemically synthesized Ag2S–Sb2S3 amorphous fast ionic conductors. J. Mater. Sci. Eng. B 141, 8 (2007)CrossRefGoogle Scholar
- 14.Escorcia-García, J., Becerra, D.: Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation. Thin Solid Films 569, 28 (2014)CrossRefGoogle Scholar
- 15.Zhang, J., Liu, Z., Liu, Z., Appl, A.C.S.: Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. Mater. Interfaces 8, 9684 (2016)CrossRefGoogle Scholar
- 16.Wang, H., Yuan, X., Wang, H., Chen, X., Wu, Z., Jiang, L.: Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance. Appl. Catal. B Environ. 193, 36 (2016)CrossRefGoogle Scholar
- 17.Zhao, S.Y., Li, C.X., Wang, L.P., Liu, N.Y., Qiao, S., Liu, B.B., Huang, H., Liu, Y., Kang, Z.H.: Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon 99, 599 (2016)CrossRefGoogle Scholar
- 18.Min, Y., He, G., Xu, Q., Chen, Y.: Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A. 2, 2578 (2014)CrossRefGoogle Scholar
- 19.Xie, J., Zhang, J., Li, S., Grote, F., Zhang, X., Zhang, H., Wang, R., Lei, Y., Pan, B., Xie, Y.: Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881 (2013)CrossRefGoogle Scholar
- 20.Cui, Z., Sun, Y., Zhang, Z., Xu, M., Xin, B.: Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth. Mater. Res. Bull. 100, 345 (2018)CrossRefGoogle Scholar
- 21.Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J., Zhang, H.: Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9, 140 (2013)CrossRefGoogle Scholar
- 22.Zhu, B., Lin, B., Zhou, Y., Sun, P., Yao, Q., Chen, Y., Gao, B.: Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J. Mater. Chem. 2, 3819 (2014)CrossRefGoogle Scholar
- 23.Song, Y., Lei, Y., Xu, H., Wang, C., Yan, J., Zhao, H., Xu, Y., Xia, J., Yin, S., Li, H.: Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity. Dalton Trans. 44, 3057 (2015)CrossRefGoogle Scholar
- 24.Long, L., Chen, J., Zhang, X., Zhang, A., Huang, Y., Rong, Q., Yu, H.: Layer-controlled growth of MoS2 on self-assembled flower-like Bi2S3 for enhanced photocatalysis under visible light irradiation. NPG Asia Mater. 8, e263 (2016)CrossRefGoogle Scholar
- 25.Guo, H., Hou, W., Liang, B., Zhang, H.: Fabrication and photocatalytic performance of Sb2S3 Film/ITO combination. Catal. Lett. 147, 2592 (2017)CrossRefGoogle Scholar
- 26.Sharma, M., Ojha, K., Ganguly, A., Ganguli, A.: Ag3PO4 nanoparticle decorated on SiO2 spheres for efficient visible light photocatalysis. New J. Chem. 39, 9242 (2015)CrossRefGoogle Scholar