Advertisement

Electronic Materials Letters

, Volume 14, Issue 4, pp 499–504 | Cite as

Facile Synthesis of 1D/2D Core–Shell Structured Sb2S3@MoS2 Nanorods with Enhanced Photocatalytic Performance

  • Meilan Xu
  • Jiachang ZhaoEmail author
Article

Abstract

Herein, a novel core–shell heterojunction structure of molybdenum disulfide (MoS2) nanosheets coated antimony trisulfide (Sb2S3) nanorods (Sb2S3@MoS2) are designed and fabricated by a two-step hydrothermal method. The Sb2S3@MoS2 heterostructure consists of one-dimension (1D) Sb2S3 nanorods coated by two-dimension (2D) MoS2 nanosheets. When utilized as a photocatalyst under simulated sunlight, compared with pure Sb2S3 nanorods and MoS2 nanosheets, Sb2S3@MoS2 nanorods perform an enhanced photoactivity in degrading Rhodamine B (RhB) with a decomposition efficiency of ~ 99%. The excellent photocatalytic property is attributed to the properly constructed heterojunction between Sb2S3 and MoS2, which can broaden the photoadsorption range. Furthermore, not only can the unique hybrid 1D/2D core–shell structures possess more reaction active sites, but also the compact interfaces between Sb2S3 and MoS2 provide rapid charge transfer channels for charge separation.

Keywords

Sb2S3@MoS2 nanorods Core–shell structure Enhanced photoactivity 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No: 51602193).

Supplementary material

13391_2018_50_MOESM1_ESM.doc (184 kb)
Supplementary material 1 Supplementary material is available in the online version of this article

References

  1. 1.
    Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    Torres-Perez, J., Gerente, C., Andres, Y.: Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal. J. Environ. Sci. Health. 47, 1173 (2012)CrossRefGoogle Scholar
  3. 3.
    Serpone, N., Emeline, A.: Semiconductor photocatalysis-past, present, and future outlook. J. Phys. Chem. Lett. 3, 673 (2012)CrossRefGoogle Scholar
  4. 4.
    Poddar, M.K., Sharma, S., Moholkar, V.S.: Investigations in two-step ultrasonic synthesis of PMMA/ZnO nanocomposites by in–situ emulsion polymerization. Polymer 99, 453 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhang, W., Sun, Y., Xiao, Z., Li, W., Li, B., Huang, X., Liu, X., Hu, J.: Heterostructures of CuS nanoparticle/ZnO nanorod arrays on carbon fibers with improved visible and solar light photocatalytic properties. J. Mater. Chem. A 3, 7304 (2015)CrossRefGoogle Scholar
  6. 6.
    Lu, M., Shao, C., Wang, K., Lu, N., Zhang, X., Zhang, P., Zhang, M., Li, X., Liu, Y.: p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions controlled fabrication and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 12, 9004 (2014)CrossRefGoogle Scholar
  7. 7.
    Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., Wang, X.: Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014)CrossRefGoogle Scholar
  8. 8.
    Li, D., Xue, J., Bai, X.: Synthesis of ZnWO4/CdWO4 core–shell structured nanorods formed by an oriented attachment mechanism with enhanced photocatalytic performances. CrystEngComm 18, 309 (2016)CrossRefGoogle Scholar
  9. 9.
    Sun, M., Li, D., Li, W., Chen, Y., Chen, Z., He, Y., Fu, X.: New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C 112, 18076 (2008)CrossRefGoogle Scholar
  10. 10.
    Han, Q., Sun, S., Sun, D., Zhu, J., Wang, X.: Room-temperature synthesis from molecular precursors and photocatalytic activities of ultralong Sb2S3 nanowires. RSC Adv. 1, 1364 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhang, H., Hu, C., Ding, Y., Lin, Y.: Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO. J. Alloys Compd. 625, 90 (2015)CrossRefGoogle Scholar
  12. 12.
    Tao, W., Chang, J., Wu, D., Gao, Z., Duan, X., Xu, F., Jiang, K.: Solvothermal synthesis of graphene-Sb2S3 composite and the degradation activity under visible light. Mater. Res. Bull. 48, 538 (2013)CrossRefGoogle Scholar
  13. 13.
    Tiwari, J.P., Shang, K.: Mechanochemically synthesized Ag2S–Sb2S3 amorphous fast ionic conductors. J. Mater. Sci. Eng. B 141, 8 (2007)CrossRefGoogle Scholar
  14. 14.
    Escorcia-García, J., Becerra, D.: Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation. Thin Solid Films 569, 28 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhang, J., Liu, Z., Liu, Z., Appl, A.C.S.: Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. Mater. Interfaces 8, 9684 (2016)CrossRefGoogle Scholar
  16. 16.
    Wang, H., Yuan, X., Wang, H., Chen, X., Wu, Z., Jiang, L.: Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance. Appl. Catal. B Environ. 193, 36 (2016)CrossRefGoogle Scholar
  17. 17.
    Zhao, S.Y., Li, C.X., Wang, L.P., Liu, N.Y., Qiao, S., Liu, B.B., Huang, H., Liu, Y., Kang, Z.H.: Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon 99, 599 (2016)CrossRefGoogle Scholar
  18. 18.
    Min, Y., He, G., Xu, Q., Chen, Y.: Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A. 2, 2578 (2014)CrossRefGoogle Scholar
  19. 19.
    Xie, J., Zhang, J., Li, S., Grote, F., Zhang, X., Zhang, H., Wang, R., Lei, Y., Pan, B., Xie, Y.: Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881 (2013)CrossRefGoogle Scholar
  20. 20.
    Cui, Z., Sun, Y., Zhang, Z., Xu, M., Xin, B.: Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth. Mater. Res. Bull. 100, 345 (2018)CrossRefGoogle Scholar
  21. 21.
    Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J., Zhang, H.: Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9, 140 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhu, B., Lin, B., Zhou, Y., Sun, P., Yao, Q., Chen, Y., Gao, B.: Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J. Mater. Chem. 2, 3819 (2014)CrossRefGoogle Scholar
  23. 23.
    Song, Y., Lei, Y., Xu, H., Wang, C., Yan, J., Zhao, H., Xu, Y., Xia, J., Yin, S., Li, H.: Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity. Dalton Trans. 44, 3057 (2015)CrossRefGoogle Scholar
  24. 24.
    Long, L., Chen, J., Zhang, X., Zhang, A., Huang, Y., Rong, Q., Yu, H.: Layer-controlled growth of MoS2 on self-assembled flower-like Bi2S3 for enhanced photocatalysis under visible light irradiation. NPG Asia Mater. 8, e263 (2016)CrossRefGoogle Scholar
  25. 25.
    Guo, H., Hou, W., Liang, B., Zhang, H.: Fabrication and photocatalytic performance of Sb2S3 Film/ITO combination. Catal. Lett. 147, 2592 (2017)CrossRefGoogle Scholar
  26. 26.
    Sharma, M., Ojha, K., Ganguly, A., Ganguli, A.: Ag3PO4 nanoparticle decorated on SiO2 spheres for efficient visible light photocatalysis. New J. Chem. 39, 9242 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations