Advertisement

Electronic Materials Letters

, Volume 14, Issue 3, pp 221–260 | Cite as

Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

  • Seon-Jin ChoiEmail author
  • Il-Doo KimEmail author
Article

Abstract

Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

Graphical Abstract

Keywords

2D materials Nanosheets Chemiresistive-type Gas sensors Wearable sensors 

Notes

Acknowledgements

This work was supported by Wearable Platform Materials Technology Center (WMC) funded by the National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP; No. 2016R1A5A1009926). This material is based upon work supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation Program (No. 10070075). This research was supported by Research and Business Development Program through the Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry and Energy (MOTIE) (No. N0002418). This study was supported by Ministry of Science, ICT & Future Planning as Biomedical Treatment Technology Development Project (2015M3A9D7067418). This work was supported by the National Research Foundation of Korea (NRF), grant no. 2014R1A4A1003712 (BRL Program).

References

  1. 1.
    Tan, C., Cao, X., Wu, X.J., He, Q., Yang, J., Zhang, X., Chen, J., Zhao, W., Han, S., Nam, G.H., Sindoro, M., Zhang, H.: Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225 (2017)CrossRefGoogle Scholar
  2. 2.
    Han, S.A., Bhatia, R., Kim, S.-W.: Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg 2, 17 (2015)CrossRefGoogle Scholar
  3. 3.
    Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D., Lee, Y.H.: Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116 (2017)CrossRefGoogle Scholar
  4. 4.
    Koski, K.J., Cui, Y.: The new skinny in two-dimensional nanomaterials. ACS Nano 7, 3739 (2013)CrossRefGoogle Scholar
  5. 5.
    Butler, S.Z., Hollen, S.M., Cao, L.Y., Cui, Y., Gupta, J.A., Gutierrez, H.R., Heinz, T.F., Hong, S.S., Huang, J.X., Ismach, A.F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V.V., Robinson, R.D., Ruoff, R.S., Salahuddin, S., Shan, J., Shi, L., Spencer, M.G., Terrones, M., Windl, W., Goldberger, J.E.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898 (2013)CrossRefGoogle Scholar
  6. 6.
    Kannan, P.K., Late, D.J., Morgan, H., Rout, C.S.: Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7, 13293 (2015)CrossRefGoogle Scholar
  7. 7.
    Park, M., Nguyen, T.P., Choi, K.S., Park, J., Ozturk, A., Kim, S.Y.: MoS2-nanosheet/graphene-oxide composite hole injection layer in organic light-emitting diodes. Electron. Mater. Lett. 13, 344 (2017)CrossRefGoogle Scholar
  8. 8.
    Xie, C., Mak, C., Tao, X., Yan, F.: Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 27, 1603886 (2017)CrossRefGoogle Scholar
  9. 9.
    Takagaki, A., Tagusagawa, C., Hayashi, S., Hara, M., Domen, K.: Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy Environ. Sci. 3, 82 (2010)CrossRefGoogle Scholar
  10. 10.
    Shen, J., Zhu, Y., Jiang, H., Li, C.: 2D nanosheets-based novel architectures: synthesis, assembly and applications. Nano Today 11, 483 (2016)CrossRefGoogle Scholar
  11. 11.
    Ghosh, D., Kim, S.O.: Chemically modified graphene based supercapacitors for flexible and miniature devices. Electron. Mater. Lett. 11, 719 (2015)CrossRefGoogle Scholar
  12. 12.
    Tan, H.T., Sun, W., Wang, L., Yan, Q.: 2D transition metal oxides/hydroxides for energy-storage applications. Chem. Nano Mater. 2, 562 (2016)Google Scholar
  13. 13.
    Kurapati, R., Kostarelos, K., Prato, M., Bianco, A.: Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28, 6052 (2016)CrossRefGoogle Scholar
  14. 14.
    Yang, G., Zhu, C., Du, D., Zhu, J., Lin, Y.: Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7, 14217 (2015)CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Tan, C., Zhang, H., Wang, L.: Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 44, 2681 (2015)CrossRefGoogle Scholar
  16. 16.
    Ping, J., Fan, Z., Sindoro, M., Ying, Y., Zhang, H.: Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 27, 1605817 (2017)CrossRefGoogle Scholar
  17. 17.
    Yang, S., Jiang, C., Wei, S.-H.: Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017)CrossRefGoogle Scholar
  18. 18.
    Liu, X., Ma, T., Pinna, N., Zhang, J.: Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1702168 (2017)CrossRefGoogle Scholar
  19. 19.
    Yang, W., Gan, L., Li, H., Zhai, T.: Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front. 3, 433 (2016)CrossRefGoogle Scholar
  20. 20.
    Wang, T., Huang, D., Yang, Z., Xu, S., He, G., Li, X., Hu, N., Yin, G., He, D., Zhang, L.: A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8, 95 (2015)CrossRefGoogle Scholar
  21. 21.
    Neri, G.: Thin 2D: the new dimensionality in gas sensing. Chemosensors 5, 21 (2017)CrossRefGoogle Scholar
  22. 22.
    Toda, K., Furue, R., Hayami, S.: Recent progress in applications of graphene oxide for gas sensing: a review. Anal. Chim. Acta 878, 43 (2015)CrossRefGoogle Scholar
  23. 23.
    Yavari, F., Koratkar, N.: Graphene-Based chemical sensors. J. Phys. Chem. Lett. 3, 1746 (2012)CrossRefGoogle Scholar
  24. 24.
    Kim, T., Kim, Y., Park, S., Kim, S., Jang, H.: Two-dimensional transition metal disulfides for chemoresistive gas sensing: perspective and challenges. Chemosensors 5, 15 (2017)CrossRefGoogle Scholar
  25. 25.
    Chan, K., Tsai, C., Hansen, H.A., Nørskov, J.K.: Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. Chem. Cat. Chem 6, 1899 (2014)Google Scholar
  26. 26.
    Akinwande, D., Petrone, N., Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)CrossRefGoogle Scholar
  27. 27.
    Kim, S.J., Choi, K., Lee, B., Kim, Y., Hong, B.H.: Materials for Flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45, 63 (2015)CrossRefGoogle Scholar
  28. 28.
    Singh, E., Meyyappan, M., Nalwa, H.S.: Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9, 34544 (2017)CrossRefGoogle Scholar
  29. 29.
    Qin, Z., Zeng, D., Zhang, J., Wu, C., Wen, Y., Shan, B., Xie, C.: Effect of layer number on recovery rate of WS2 nanosheets for ammonia detection at room temperature. Appl. Surf. Sci. 414, 244 (2017)CrossRefGoogle Scholar
  30. 30.
    Late, D.J., Huang, Y.K., Liu, B., Acharya, J., Shirodkar, S.N., Luo, J.J., Yan, A.M., Charles, D., Waghmare, U.V., Dravid, V.P., Rao, C.N.R.: Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879 (2013)CrossRefGoogle Scholar
  31. 31.
    Liu, B.L., Chen, L., Liu, G., Abbas, A.N., Fathi, M., Zhou, C.W.: High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano 8, 5304 (2014)CrossRefGoogle Scholar
  32. 32.
    Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)CrossRefGoogle Scholar
  33. 33.
    Basu, S., Bhattacharyya, P.: Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1 (2012)CrossRefGoogle Scholar
  34. 34.
    Yuan, W., Shi, G.: Graphene-based gas sensors. J. Mater. Chem. A 1, 10078 (2013)CrossRefGoogle Scholar
  35. 35.
    Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A.: Recent advances in graphene based gas sensors. Sens. Actuators B 218, 160 (2015)CrossRefGoogle Scholar
  36. 36.
    Choi, Y.R., Yoon, Y.-G., Choi, K.S., Kang, J.H., Shim, Y.-S., Kim, Y.H., Chang, H.J., Lee, J.-H., Park, C.R., Kim, S.Y., Jang, H.W.: Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91, 178 (2015)CrossRefGoogle Scholar
  37. 37.
    Fowler, J.D., Allen, M.J., Tung, V.C., Yang, Y., Kaner, R.B., Weiller, B.H.: Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301 (2009)CrossRefGoogle Scholar
  38. 38.
    Wang, Y.Y., Zhang, L.L., Hu, N.T., Wang, Y., Zhang, Y.F., Zhou, Z.H., Liu, Y.H., Shen, S., Peng, C.S.: Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 9, 1 (2014)CrossRefGoogle Scholar
  39. 39.
    Lu, G., Ocola, L.E., Chen, J.: Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20, 445502 (2009)CrossRefGoogle Scholar
  40. 40.
    Su, P.-G., Shieh, H.-C.: Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens. Actuators B 190, 865 (2014)CrossRefGoogle Scholar
  41. 41.
    Gengler, R.Y., Badali, D.S., Zhang, D., Dimos, K., Spyrou, K., Gournis, D., Miller, R.J.: Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 4, 2560 (2013)CrossRefGoogle Scholar
  42. 42.
    Park, S.H., Kim, H.S.: Environmentally benign and facile reduction of graphene oxide by flash light irradiation. Nanotechnology 26, 205601 (2015)CrossRefGoogle Scholar
  43. 43.
    Senyuk, B., Behabtu, N., Martinez, A., Lee, T., Tsentalovich, D.E., Ceriotti, G., Tour, J.M., Pasquali, M., Smalyukh, I.I.: Three-dimensional patterning of solid microstructures through laser reduction of colloidal graphene oxide in liquid-crystalline dispersions. Nat. Commun. 6, 7157 (2015)CrossRefGoogle Scholar
  44. 44.
    Huang, L., Liu, Y., Ji, L.-C., Xie, Y.-Q., Wang, T., Shi, W.-Z.: Pulsed laser assisted reduction of graphene oxide. Carbon 49, 2431 (2011)CrossRefGoogle Scholar
  45. 45.
    Secor, E.B., Ahn, B.Y., Gao, T.Z., Lewis, J.A., Hersam, M.C.: Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27, 6683 (2015)CrossRefGoogle Scholar
  46. 46.
    Kymakis, E., Savva, K., Stylianakis, M.M., Fotakis, C., Stratakis, E.: Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv. Funct. Mater. 23, 2742 (2013)CrossRefGoogle Scholar
  47. 47.
    Choi, S.-J., Kim, S.-J., Kim, I.-D.: Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater. 8, e315 (2016)CrossRefGoogle Scholar
  48. 48.
    Yuan, W., Liu, A., Huang, L., Li, C., Shi, G.: High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25, 766 (2013)CrossRefGoogle Scholar
  49. 49.
    Kim, Y.H., Park, J.S., Choi, Y.-R., Park, S.Y., Lee, S.Y., Sohn, W., Shim, Y.-S., Lee, J.-H., Park, C.R., Choi, Y.S., Hong, B.H., Lee, J.H., Lee, W.H., Lee, D., Jang, H.W.: Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels. J. Mater. Chem. A 5, 19116 (2017)CrossRefGoogle Scholar
  50. 50.
    Park, M.-S., Kim, K.H., Kim, M.-J., Lee, Y.-S.: NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf. A 490, 104 (2016)CrossRefGoogle Scholar
  51. 51.
    Lv, R.T., Chen, G.G., Li, Q., McCreary, A., Botello-Mendez, A., Morozov, S.V., Liang, L.B., Declerck, X., Perea-Lopez, N., Culleni, D.A., Feng, S.M., Elias, A.L., Cruz-Silva, R., Fujisawa, K., Endo, M., Kang, F.Y., Charlier, J.C., Meunier, V., Pan, M.H., Harutyunyan, A.R., Novoselov, K.S., Terrones, M.: Ultrasensitive gas detection of large-area boron-doped graphene. Proc. Natl. Acad. Sci. USA 112, 14527 (2015)CrossRefGoogle Scholar
  52. 52.
    Lee, G., Yang, G., Cho, A., Han, J.W., Kim, J.: Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys. Chem. Chem. Phys. 18, 14198 (2016)CrossRefGoogle Scholar
  53. 53.
    Kumar, B., Min, K., Bashirzadeh, M., Farimani, A.B., Bae, M.H., Estrada, D., Kim, Y.D., Yasaei, P., Park, Y.D., Pop, E., Aluru, N.R., Salehi-Khojin, A.: The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962 (2013)CrossRefGoogle Scholar
  54. 54.
    Yang, G., Lee, C., Kim, J., Ren, F., Pearton, S.J.: Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15, 1798 (2013)CrossRefGoogle Scholar
  55. 55.
    Ghosh, R., Singh, A., Santra, S., Ray, S.K., Chandra, A., Guha, P.K.: Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor. Sens. Actuators B 205, 67 (2014)CrossRefGoogle Scholar
  56. 56.
    Kumar, S., Kaushik, S., Pratap, R., Raghavan, S.: Graphene on paper: a simple, low-cost chemical sensing platform. ACS Appl. Mater. Interfaces 7, 2189 (2015)CrossRefGoogle Scholar
  57. 57.
    Choi, H., Jeong, H.Y., Lee, D.-S., Choi, C.-G., Choi, S.-Y.: Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition. Carbon Lett. 14, 186 (2013)CrossRefGoogle Scholar
  58. 58.
    Jung, M.W., Myung, S., Song, W., Kang, M.A., Kim, S.H., Yang, C.S., Lee, S.S., Lim, J., Park, C.Y., Lee, J.O., An, K.S.: Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method. ACS Appl. Mater. Interfaces 6, 13319 (2014)CrossRefGoogle Scholar
  59. 59.
    Kim, Y.H., Kim, S.J., Kim, Y.J., Shim, Y.S., Kim, S.Y., Hong, B.H., Jang, H.W.: Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9, 10453 (2015)CrossRefGoogle Scholar
  60. 60.
    Choi, H., Choi, J.S., Kim, J.S., Choe, J.H., Chung, K.H., Shin, J.W., Kim, J.T., Youn, D.H., Kim, K.C., Lee, J.I., Choi, S.Y., Kim, P., Choi, C.G., Yu, Y.J.: Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10, 3685 (2014)CrossRefGoogle Scholar
  61. 61.
    Hong, S., Lee, H., Lee, J., Kwon, J., Han, S., Suh, Y.D., Cho, H., Shin, J., Yeo, J., Ko, S.H.: Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 27, 4744 (2015)CrossRefGoogle Scholar
  62. 62.
    An, B.W., Gwak, E.J., Kim, K., Kim, Y.C., Jang, J., Kim, J.Y., Park, J.U.: Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett. 16, 471 (2016)CrossRefGoogle Scholar
  63. 63.
    Khan, A., Lee, S., Jang, T., Xiong, Z., Zhang, C., Tang, J., Guo, L.J., Li, W.D.: High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12, 3021 (2016)CrossRefGoogle Scholar
  64. 64.
    Choi, S.J., Choi, H.J., Koo, W.T., Huh, D., Lee, H., Kim, I.D.: Metal-organic framework templated PdO–Co3O4 nanocubes functionalized by SWCNTs: improved NO2 reaction kinetics on flexible heating film. ACS Appl. Mater. Interfaces 9, 40593 (2017)CrossRefGoogle Scholar
  65. 65.
    Choi, S.J., Kim, S.J., Jang, J.S., Lee, J.H., Kim, I.D.: Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: improved reversible reaction kinetics of optically reduced graphene oxide. Small 12, 5826 (2016)CrossRefGoogle Scholar
  66. 66.
    Li, W.W., Geng, X.M., Guo, Y.F., Rong, J.Z., Gong, Y.P., Wu, L.Q., Zhang, X.M., Li, P., Xu, J.B., Cheng, G.S., Sun, M.T., Liu, L.W.: Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5, 6955 (2011)CrossRefGoogle Scholar
  67. 67.
    Chung, M.G., Kim, D.-H., Seo, D.K., Kim, T., Im, H.U., Lee, H.M., Yoo, J.-B., Hong, S.-H., Kang, T.J., Kim, Y.H.: Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B 169, 387 (2012)CrossRefGoogle Scholar
  68. 68.
    Shin, D.H., Lee, J.S., Jun, J., An, J.H., Kim, S.G., Cho, K.H., Jang, J.: Flower-like palladium nanoclusters decorated graphene electrodes for ultrasensitive and flexible hydrogen gas sensing. Sci. Rep. 5, 12294 (2015)CrossRefGoogle Scholar
  69. 69.
    Lee, J.S., Oh, J., Jun, J., Jang, J.: Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9, 7783 (2015)CrossRefGoogle Scholar
  70. 70.
    Huang, L., Wang, Z., Zhang, J., Pu, J., Lin, Y., Xu, S., Shen, L., Chen, Q., Shi, W.: Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interfaces 6, 7426 (2014)CrossRefGoogle Scholar
  71. 71.
    Cho, B., Yoon, J., Hahm, M.G., Kim, D.-H., Kim, A.R., Kahng, Y.H., Park, S.-W., Lee, Y.-J., Park, S.-G., Kwon, J.-D., Kim, C.S., Song, M., Jeong, Y., Nam, K.-S., Ko, H.C.: Graphene-based gas sensor: metal decoration effect and application to a flexible device. J. Mater. Chem. C 2, 5280 (2014)CrossRefGoogle Scholar
  72. 72.
    Gupta Chatterjee, S., Chatterjee, S., Ray, A.K., Chakraborty, A.K.: Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B 221, 1170 (2015)CrossRefGoogle Scholar
  73. 73.
    Jiang, Z., Li, J., Aslan, H., Li, Q., Li, Y., Chen, M., Huang, Y., Froning, J.P., Otyepka, M., Zbořil, R., Besenbacher, F., Dong, M.: A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Mater. Chem. A 2, 6714 (2014)CrossRefGoogle Scholar
  74. 74.
    Choi, S.J., Fuchs, F., Demadrille, R., Grevin, B., Jang, B.H., Lee, S.J., Lee, J.H., Tuller, H.L., Kim, I.D.: Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl. Mater. Interfaces 6, 9061 (2014)CrossRefGoogle Scholar
  75. 75.
    Choi, S.J., Choi, C., Kim, S.J., Cho, H.J., Hakim, M., Jeon, S., Kim, I.D.: Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. Sci. Rep. 5, 8067 (2015)CrossRefGoogle Scholar
  76. 76.
    Choi, S.-J., Choi, C., Kim, S.-J., Cho, H.-J., Jeon, S., Kim, I.-D.: Facile synthesis of hierarchical porous WO3 nanofibers having 1D nanoneedles and their functionalization with non-oxidized graphene flakes for selective detection of acetone molecules. RSC Adv. 5, 7584 (2015)CrossRefGoogle Scholar
  77. 77.
    Choi, S.J., Jang, B.H., Lee, S.J., Min, B.K., Rothschild, A., Kim, I.D.: Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interfaces 6, 2588 (2014)CrossRefGoogle Scholar
  78. 78.
    Chu, X., Hu, R., Wang, J., Dong, Y., Zhang, W., Bai, L., Sun, W.: Preparation and gas sensing properties of graphene-Zn2SnO4 composite materials. Sens. Actuators B 251, 120 (2017)CrossRefGoogle Scholar
  79. 79.
    Chen, A., Liu, R., Peng, X., Chen, Q., Wu, J.: 2D hybrid nanomaterials for selective detection of NO2 and SO2 using “Light On and Off” strategy. ACS Appl. Mater. Interfaces 9, 37191 (2017)CrossRefGoogle Scholar
  80. 80.
    Zhang, S., Hang, N.T., Zhang, Z., Yue, H., Yang, W.: Preparation of g-C3N4/graphene composite for detecting NO2 at room temperature. Nanomaterials 7, 12 (2017)CrossRefGoogle Scholar
  81. 81.
    Hang, N.T., Zhang, S., Yang, W.: Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sens. Actuators B 248, 940 (2017)CrossRefGoogle Scholar
  82. 82.
    Hu, J., Zou, C., Su, Y., Li, M., Hu, N., Ni, H., Yang, Z., Zhang, Y.: Enhanced NO2 sensing performance of reduced graphene oxide by in situ anchoring carbon dots. J. Mater. Chem. C 5, 6862 (2017)CrossRefGoogle Scholar
  83. 83.
    Duy, L.T., Trung, T.Q., Hanif, A., Siddiqui, S., Roh, E., Lee, W., Lee, N.-E.: A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide. 2D Mater. 4, 025062 (2017)CrossRefGoogle Scholar
  84. 84.
    Yun, Y.J., Hong, W.G., Choi, N.J., Kim, B.H., Jun, Y., Lee, H.K.: Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor. Sci. Rep. 5, 10904 (2015)CrossRefGoogle Scholar
  85. 85.
    Seekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., Wongchoosuk, C.: Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Org. Electron. 15, 2971 (2014)CrossRefGoogle Scholar
  86. 86.
    Chung, M.G., Kim, D.H., Lee, H.M., Kim, T., Choi, J.H., Seo, D.K., Yoo, J.-B., Hong, S.-H., Kang, T.J., Kim, Y.H.: Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B 166, 172 (2012)CrossRefGoogle Scholar
  87. 87.
    Wang, D.H., Hu, Y., Zhao, J.J., Zeng, L.L., Tao, X.M., Chen, W.: Holey reduced graphene oxide nanosheets for high performance room temperature gas sensing. J. Mater. Chem. A 2, 17415 (2014)CrossRefGoogle Scholar
  88. 88.
    Yasaei, P., Kumar, B., Hantehzadeh, R., Kayyalha, M., Baskin, A., Repnin, N., Wang, C., Klie, R.F., Chen, Y.P., Kral, P., Salehi-Khojin, A.: Chemical sensing with switchable transport channels in graphene grain boundaries. Nat. Commun. 5, 4911 (2014)CrossRefGoogle Scholar
  89. 89.
    Wang, X., Xiong, Z., Liu, Z., Zhang, T.: Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 27, 1370 (2015)CrossRefGoogle Scholar
  90. 90.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012)CrossRefGoogle Scholar
  91. 91.
    Lv, R., Robinson, J.A., Schaak, R.E., Sun, D., Sun, Y., Mallouk, T.E., Terrones, M.: Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48, 56 (2015)CrossRefGoogle Scholar
  92. 92.
    Wang, F., Wang, Z., Wang, Q., Wang, F., Yin, L., Xu, K., Huang, Y., He, J.: Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 26, 292001 (2015)CrossRefGoogle Scholar
  93. 93.
    Andoshe, D.M., Jeon, J.-M., Kim, S.Y., Jang, H.W.: Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electron. Mater. Lett. 11, 323 (2015)CrossRefGoogle Scholar
  94. 94.
    Kalantar-zadeh, K., Ou, J.Z., Daeneke, T., Mitchell, A., Sasaki, T., Fuhrer, M.S.: Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73 (2016)CrossRefGoogle Scholar
  95. 95.
    Li, X., Shan, J., Zhang, W., Su, S., Yuwen, L., Wang, L.: Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13, 1602660 (2017)CrossRefGoogle Scholar
  96. 96.
    Huang, X., Zeng, Z., Zhang, H.: Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934 (2013)CrossRefGoogle Scholar
  97. 97.
    Li, H., Wu, J., Yin, Z., Zhang, H.: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067 (2014)CrossRefGoogle Scholar
  98. 98.
    Tao, Y., Wu, X., Wang, W., Wang, J.: Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. J. Mater. Chem. C 3, 1347 (2015)CrossRefGoogle Scholar
  99. 99.
    Tan, C., Yu, P., Hu, Y., Chen, J., Huang, Y., Cai, Y., Luo, Z., Li, B., Lu, Q., Wang, L., Liu, Z., Zhang, H.: High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc. 137, 10430 (2015)CrossRefGoogle Scholar
  100. 100.
    Li, B.L., Wang, J., Zou, H.L., Garaj, S., Lim, C.T., Xie, J., Li, N.B., Leong, D.T.: Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 26, 7034 (2016)CrossRefGoogle Scholar
  101. 101.
    Park, M., Park, Y.J., Chen, X., Park, Y.K., Kim, M.S., Ahn, J.H.: MoS2 -based tactile sensor for electronic skin applications. Adv. Mater. 28, 2556 (2016)CrossRefGoogle Scholar
  102. 102.
    Zhang, W., Zhang, P., Su, Z., Wei, G.: Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale 7, 18364 (2015)CrossRefGoogle Scholar
  103. 103.
    Huang, Y., Guo, J., Kang, Y., Ai, Y., Li, C.M.: Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale 7, 19358 (2015)CrossRefGoogle Scholar
  104. 104.
    Zhang, X., Lai, Z., Tan, C., Zhang, H.: Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55, 8816 (2016)CrossRefGoogle Scholar
  105. 105.
    Rao, C.N.R., Maitra, U., Waghmare, U.V.: Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem. Phy. Lett. 609, 172 (2014)CrossRefGoogle Scholar
  106. 106.
    Li, H., Yin, Z., He, Q., Li, H., Huang, X., Lu, G., Fam, D.W., Tok, A.I., Zhang, Q., Zhang, H.: Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63 (2012)CrossRefGoogle Scholar
  107. 107.
    Perkins, F.K., Friedman, A.L., Cobas, E., Campbell, P.M., Jernigan, G.G., Jonker, B.T.: Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668 (2013)CrossRefGoogle Scholar
  108. 108.
    Cho, B., Kim, A.R., Park, Y., Yoon, J., Lee, Y.J., Lee, S., Yoo, T.J., Kang, C.G., Lee, B.H., Ko, H.C., Kim, D.H., Hahm, M.G.: Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interfaces 7, 2952 (2015)CrossRefGoogle Scholar
  109. 109.
    Lee, K., Gatensby, R., McEvoy, N., Hallam, T., Duesberg, G.S.: High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699 (2013)CrossRefGoogle Scholar
  110. 110.
    Cho, S.Y., Kim, S.J., Lee, Y., Kim, J.S., Jung, W.B., Yoo, H.W., Kim, J., Jung, H.T.: Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9, 9314 (2015)CrossRefGoogle Scholar
  111. 111.
    Jaramillo, T.F., Jorgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007)CrossRefGoogle Scholar
  112. 112.
    Ko, K.Y., Song, J.G., Kim, Y., Choi, T., Shin, S., Lee, C.W., Lee, K., Koo, J., Lee, H., Kim, J., Lee, T., Park, J., Kim, H.: Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10, 9287 (2016)CrossRefGoogle Scholar
  113. 113.
    Zhou, C., Yang, W., Zhu, H.: Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys. 142, 214704 (2015)CrossRefGoogle Scholar
  114. 114.
    Late, D.J., Doneux, T., Bougouma, M.: Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105, 233103 (2014)CrossRefGoogle Scholar
  115. 115.
    Zhang, S., Nguyen, T.H., Zhang, W., Park, Y., Yang, W.: Correlation between lateral size and gas sensing performance of MoSe2 nanosheets. Appl. Phys. Lett. 111, 092104 (2017)CrossRefGoogle Scholar
  116. 116.
    Yim, C., Lee, K., McEvoy, N., O’Brien, M., Riazimehr, S., Berner, N.C., Cullen, C.P., Kotakoski, J., Meyer, J.C., Lemme, M.C., Duesberg, G.S.: High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 10, 9550 (2016)CrossRefGoogle Scholar
  117. 117.
    Yang, A., Gao, J., Li, B., Tan, J., Xiang, Y., Gupta, T., Li, L., Suresh, S., Idrobo, J.C., Lu, T.-M., Rong, M., Koratkar, N.: Humidity sensing using vertically oriented arrays of ReS2 nanosheets deposited on an interdigitated gold electrode. 2D Mater. 3, 045012 (2016)CrossRefGoogle Scholar
  118. 118.
    Zhang, S.-L., Choi, H.-H., Yue, H.-Y., Yang, W.-C.: Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor. Curr. Appl. Phys. 14, 264 (2014)CrossRefGoogle Scholar
  119. 119.
    Feng, J., Peng, L., Wu, C., Sun, X., Hu, S., Lin, C., Dai, J., Yang, J., Xie, Y.: Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969 (2012)CrossRefGoogle Scholar
  120. 120.
    Jha, R.K., Guha, P.K.: Liquid exfoliated pristine WS2 nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors. Nanotechnology 27, 475503 (2016)CrossRefGoogle Scholar
  121. 121.
    Cho, B., Yoon, J., Lim, S.K., Kim, A.R., Choi, S.Y., Kim, D.H., Lee, K.H., Lee, B.H., Ko, H.C., Hahm, M.G.: Metal decoration effects on the gas-sensing properties of 2D hybrid-structures on flexible substrates. Sensors 15, 24903 (2015)CrossRefGoogle Scholar
  122. 122.
    Cho, S.Y., Koh, H.J., Yoo, H.W., Kim, J.S., Jung, H.T.: Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2. ACS Sens. 2, 183 (2017)CrossRefGoogle Scholar
  123. 123.
    Choi, S.Y., Kim, Y., Chung, H.S., Kim, A.R., Kwon, J.D., Park, J., Kim, Y.L., Kwon, S.H., Hahm, M.G., Cho, B.: Effect of Nb doping on chemical sensing performance of two-dimensional layered MoSe2. ACS Appl. Mater. Interfaces 9, 3817 (2017)CrossRefGoogle Scholar
  124. 124.
    Kuru, C., Choi, C., Kargar, A., Choi, D., Kim, Y.J., Liu, C.H., Yavuz, S., Jin, S.: MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2, 1500004 (2015)CrossRefGoogle Scholar
  125. 125.
    He, Q., Zeng, Z., Yin, Z., Li, H., Wu, S., Huang, X., Zhang, H.: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994 (2012)CrossRefGoogle Scholar
  126. 126.
    Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., Zhang, H.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093 (2011)CrossRefGoogle Scholar
  127. 127.
    Qin, Z., Ouyang, C., Zhang, J., Wan, L., Wang, S., Xie, C., Zeng, D.: 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sens. Actuators B 253, 1034 (2017)CrossRefGoogle Scholar
  128. 128.
    Cui, S., Wen, Z., Huang, X., Chang, J., Chen, J.: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305 (2015)CrossRefGoogle Scholar
  129. 129.
    Dai, Y., Wu, X., Sha, D., Chen, M., Zou, H., Ren, J., Wang, J., Yan, X.: Facile self-assembly of Fe3O4 nanoparticles@WS2 nanosheets: a promising candidate for supercapacitor electrode. Electron. Mater. Lett. 12, 789 (2016)CrossRefGoogle Scholar
  130. 130.
    Cha, J.-H., Choi, S.-J., Yu, S., Kim, I.-D.: 2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A 5, 8725 (2017)CrossRefGoogle Scholar
  131. 131.
    O’Brien, M., Lee, K., Morrish, R., Berner, N.C., McEvoy, N., Wolden, C.A., Duesberg, G.S.: Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 615, 6 (2014)CrossRefGoogle Scholar
  132. 132.
    Kim, J.S., Yoo, H.W., Choi, H.O., Jung, H.T.: Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14, 5941 (2014)CrossRefGoogle Scholar
  133. 133.
    Yoon, J.W., Lee, J.H.: Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives. Lab Chip 17, 3537 (2017)CrossRefGoogle Scholar
  134. 134.
    Ma, N., Suematsu, K., Yuasa, M., Kida, T., Shimanoe, K.: Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces 7, 5863 (2015)CrossRefGoogle Scholar
  135. 135.
    Suematsu, K., Shin, Y., Hua, Z., Yoshida, K., Yuasa, M., Kida, T., Shimanoe, K.: Nanoparticle cluster gas sensor: controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl. Mater. Interfaces 6, 5319 (2014)CrossRefGoogle Scholar
  136. 136.
    Woo, H.S., Na, C.W., Lee, J.H.: Design of highly selective gas sensors via physicochemical modification of oxide nanowires: overview. Sensors 16, E1531 (2016)CrossRefGoogle Scholar
  137. 137.
    Ramgir, N., Datta, N., Kaur, M., Kailasaganapathi, S., Debnath, A.K., Aswal, D.K., Gupta, S.K.: Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf. A 439, 101 (2013)CrossRefGoogle Scholar
  138. 138.
    Kim, S.J., Choi, S.J., Jang, J.S., Cho, H.J., Kim, I.D.: Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50, 1587 (2017)CrossRefGoogle Scholar
  139. 139.
    Choi, S.J., Kim, S.J., Cho, H.J., Jang, J.S., Lin, Y.M., Tuller, H.L., Rutledge, G.C., Kim, I.D.: WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12, 911 (2016)CrossRefGoogle Scholar
  140. 140.
    Choi, S.-J., Persano, L., Camposeo, A., Jang, J.-S., Koo, W.-T., Kim, S.-J., Cho, H.-J., Kim, I.-D., Pisignano, D.: Electrospun nanostructures for high performance chemiresistive and optical sensors. Macromol. Mater. Eng. 302, 1600569 (2017)CrossRefGoogle Scholar
  141. 141.
    Jang, J.-S., Choi, S.-J., Kim, S.-J., Hakim, M., Kim, I.-D.: Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26, 4740 (2016)CrossRefGoogle Scholar
  142. 142.
    Choi, S.J., Lee, I., Jang, B.H., Youn, D.Y., Ryu, W.H., Park, C.O., Kim, I.D.: Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85, 1792 (2013)CrossRefGoogle Scholar
  143. 143.
    Choi, S.J., Chattopadhyay, S., Kim, J.J., Kim, S.J., Tuller, H.L., Rutledge, G.C., Kim, I.D.: Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 8, 9159 (2016)CrossRefGoogle Scholar
  144. 144.
    Kim, B.Y., Ahn, J.H., Yoon, J.W., Lee, C.S., Kang, Y.C., Abdel-Hady, F., Wazzan, A.A., Lee, J.H.: Highly selective xylene sensor based on NiO/NiMoO4 nanocomposite hierarchical spheres for indoor air monitoring. ACS Appl. Mater. Interfaces 8, 34603 (2016)CrossRefGoogle Scholar
  145. 145.
    Yoon, J.-W., Choi, S.H., Kim, J.-S., Jang, H.W., Kang, Y.C., Lee, J.-H.: Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater. 8, e244 (2016)CrossRefGoogle Scholar
  146. 146.
    Zeng, Y., Qiao, L., Bing, Y., Wen, M., Zou, B., Zheng, W., Zhang, T., Zou, G.: Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films. Sens. Actuators B 173, 897 (2012)CrossRefGoogle Scholar
  147. 147.
    Xu, J., Xue, Z., Qin, N., Cheng, Z., Xiang, Q.: The crystal facet-dependent gas sensing properties of ZnO nanosheets: experimental and computational study. Sens. Actuators B 242, 148 (2017)CrossRefGoogle Scholar
  148. 148.
    Qiao, P.-Y., Zhang, L.-X., Zhu, M.-Y., Yin, Y.-Y., Zhao, Z.-W., Sun, H.-N., Dong, J.-Y., Bie, L.-J.: Acetylene sensing enhancement of mesoporous ZnO nanosheets with morphology and defect induced structural sensitization. Sens. Actuators B 250, 189 (2017)CrossRefGoogle Scholar
  149. 149.
    Khan, R., Raj, S., Yun, J.H., Yu, Y.-T., Lee, J.I., Lee, I.-H.: Facile preparation of ZnO nanosheets and its photocatalytic activity in the degradation of rhodamine B dye under UV irradiation. Electron. Mater. Lett. 12, 784 (2016)CrossRefGoogle Scholar
  150. 150.
    Lou, Z., Wang, L., Wang, R., Fei, T., Zhang, T.: Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route. Solid-State Electron. 76, 91 (2012)CrossRefGoogle Scholar
  151. 151.
    Zeng, W., Wu, M., Li, Y., Wu, S.: Hydrothermal synthesis of different SnO2 nanosheets with CO gas sensing properties. J. Mater. Sci.: Mater. Electron. 24, 3701 (2013)Google Scholar
  152. 152.
    Wang, Z., Wang, D., Sun, J.: Controlled synthesis of defect-rich ultrathin two-dimensional WO3 nanosheets for NO2 gas detection. Sens. Actuators B 245, 828 (2017)CrossRefGoogle Scholar
  153. 153.
    Umar, A., Alshahrani, A.A., Algarni, H., Kumar, R.: CuO nanosheets as potential scaffolds for gas sensing applications. Sens. Actuators B 250, 24 (2017)CrossRefGoogle Scholar
  154. 154.
    Li, Z., Lin, Z., Wang, N., Wang, J., Liu, W., Sun, K., Fu, Y.Q., Wang, Z.: High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sens. Actuators B 235, 222 (2016)CrossRefGoogle Scholar
  155. 155.
    Li, S.-M., Zhang, L.-X., Zhu, M.-Y., Ji, G.-J., Zhao, L.-X., Yin, J., Bie, L.-J.: Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sens. Actuators B 249, 611 (2017)CrossRefGoogle Scholar
  156. 156.
    Zhang, S.-L., Lim, J.-O., Huh, J.-S., Noh, J.-S., Lee, W.: Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys. 13, S156 (2013)CrossRefGoogle Scholar
  157. 157.
    Yu, T., Cheng, X., Zhang, X., Sui, L., Xu, Y., Gao, S., Zhao, H., Huo, L.: Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. J. Mater. Chem. A 3, 11991 (2015)CrossRefGoogle Scholar
  158. 158.
    Wang, X., Yao, S., Wu, X., Shi, Z., Sun, H., Que, R.: High gas-sensor and supercapacitor performance of porous Co3O4 ultrathin nanosheets. RSC Adv. 5, 17938 (2015)CrossRefGoogle Scholar
  159. 159.
    Wang, X., Su, J., Chen, H., Li, G.D., Shi, Z., Zou, H., Zou, X.: Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection. ACS Appl. Mater. Interfaces 9, 16335 (2017)CrossRefGoogle Scholar
  160. 160.
    Li, D.J., Huang, Z., Hwang, T.H., Narayan, R., Choi, J.W., Kim, S.O.: Atomic thin titania nanosheet-coupled reduced graphene oxide 2D heterostructures for enhanced photocatalytic activity and fast lithium storage. Electron. Mater. Lett. 12, 211 (2016)CrossRefGoogle Scholar
  161. 161.
    Sun, Z., Liao, T., Dou, Y., Hwang, S.M., Park, M.S., Jiang, L., Kim, J.H., Dou, S.X.: Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014)CrossRefGoogle Scholar
  162. 162.
    Rui, X., Lu, Z., Yin, Z., Sim, D.H., Xiao, N., Lim, T.M., Hng, H.H., Zhang, H., Yan, Q.: Oriented molecular attachments through sol-gel chemistry for synthesis of ultrathin hydrated vanadium pentoxide nanosheets and their applications. Small 9, 716 (2013)CrossRefGoogle Scholar
  163. 163.
    Choi, S.-J., Jang, J.-S., Park, H.J., Kim, I.-D.: Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv. Funct. Mater. 27, 1606026 (2017)CrossRefGoogle Scholar
  164. 164.
    Choi, S.-J., Ku, K.H., Kim, B.J., Kim, I.-D.: Novel templating route using Pt infiltrated block copolymer microparticles for catalytic Pt functionalized macroporous WO3 nanofibers and its application in breath pattern recognition. ACS Sens. 1, 1124 (2016)CrossRefGoogle Scholar
  165. 165.
    Jang, J.S., Yu, S., Choi, S.J., Kim, S.J., Koo, W.T., Kim, I.D.: Metal chelation assisted in situ migration and functionalization of catalysts on peapod-like hollow SnO2 toward a superior chemical sensor. Small 12, 5989 (2016)CrossRefGoogle Scholar
  166. 166.
    Kim, S.J., Choi, S.J., Jang, J.S., Kim, N.H., Hakim, M., Tuller, H.L., Kim, I.D.: Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10, 5891 (2016)CrossRefGoogle Scholar
  167. 167.
    Choi, S.J., Kim, M.P., Lee, S.J., Kim, B.J., Kim, I.D.: Facile Au catalyst loading on the inner shell of hollow SnO2 spheres using Au-decorated block copolymer sphere templates and their selective H2S sensing characteristics. Nanoscale 6, 11898 (2014)CrossRefGoogle Scholar
  168. 168.
    Kim, S.J., Choi, S.J., Jang, J.S., Cho, H.J., Koo, W.T., Tuller, H.L., Kim, I.D.: Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Adv. Mater. 29, 1700737 (2017)CrossRefGoogle Scholar
  169. 169.
    Jang, J.S., Choi, S.J., Koo, W.T., Kim, S.J., Cheong, J.Y., Kim, I.D.: Elaborate manipulation for Sub-10 nm hollow catalyst sensitized heterogeneous oxide nanofibers for room temperature chemical sensors. ACS Appl. Mater. Interfaces 9, 24821 (2017)CrossRefGoogle Scholar
  170. 170.
    Masuda, Y., Itoh, T., Shin, W., Kato, K.: SnO2 nanosheet/nanoparticle detector for the sensing of 1-nonanal gas produced by lung cancer. Sci. Rep. 5, 10122 (2015)CrossRefGoogle Scholar
  171. 171.
    Cao, Y., He, Y., Zou, X., Li, G.-D.: Tungsten oxide clusters decorated ultrathin In2O3 nanosheets for selective detecting formaldehyde. Sens. Actuators B 252, 232 (2017)CrossRefGoogle Scholar
  172. 172.
    Chen, Z., Lin, Z., Xu, M., Hong, Y., Li, N., Fu, P., Chen, Z.: Effect of gas sensing properties by Sn–Rh codoped ZnO nanosheets. Electron. Mater. Lett. 12, 343 (2016)CrossRefGoogle Scholar
  173. 173.
    Li, Y., Ban, H., Zhao, H., Yang, M.: Facile preparation of a composite of TiO2 nanosheets and polyaniline and its gas sensing properties. RSC Adv. 5, 106945 (2015)CrossRefGoogle Scholar
  174. 174.
    Li, Y., Zhao, H., Ban, H., Yang, M.: Composites of Fe2O3 nanosheets with polyaniline: Preparation, gas sensing properties and sensing mechanism. Sens. Actuators B 245, 34 (2017)CrossRefGoogle Scholar
  175. 175.
    Rahmani, M.B., Yaacob, M.H., Sabri, Y.M.: Hydrogen sensors based on 2D WO3 nanosheets prepared by anodization. Sens. Actuators B 251, 57 (2017)CrossRefGoogle Scholar
  176. 176.
    Li, G., Wang, X., Liu, L., Liu, R., Shen, F., Cui, Z., Chen, W., Zhang, T.: Controllable synthesis of 3D Ni(OH)2 and NiO nanowalls on various substrates for high-performance nanosensors. Small 11, 731 (2015)CrossRefGoogle Scholar
  177. 177.
    Deria, P., Mondloch, J.E., Karagiaridi, O., Bury, W., Hupp, J.T., Farha, O.K.: Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev. 43, 5896 (2014)CrossRefGoogle Scholar
  178. 178.
    Adil, K., Belmabkhout, Y., Pillai, R.S., Cadiau, A., Bhatt, P.M., Assen, A.H., Maurin, G., Eddaoudi, M.: Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402 (2017)CrossRefGoogle Scholar
  179. 179.
    Chen, L., Luque, R., Li, Y.: Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 46, 4614 (2017)CrossRefGoogle Scholar
  180. 180.
    Hmadeh, M., Lu, Z., Liu, Z., Gándara, F., Furukawa, H., Wan, S., Augustyn, V., Chang, R., Liao, L., Zhou, F., Perre, E., Ozolins, V., Suenaga, K., Duan, X., Dunn, B., Yamamto, Y., Terasaki, O., Yaghi, O.M.: New porous crystals of extended metal-catecholates. Chem. Mater. 24, 3511 (2012)CrossRefGoogle Scholar
  181. 181.
    Kambe, T., Sakamoto, R., Hoshiko, K., Takada, K., Miyachi, M., Ryu, J.H., Sasaki, S., Kim, J., Nakazato, K., Takata, M., Nishihara, H.: pi-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462 (2013)CrossRefGoogle Scholar
  182. 182.
    Sheberla, D., Sun, L., Blood-Forsythe, M.A., Er, S., Wade, C.R., Brozek, C.K., Aspuru-Guzik, A., Dinca, M.: High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136, 8859 (2014)CrossRefGoogle Scholar
  183. 183.
    Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Llabres, I.X.F.X., Gascon, J.: Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48 (2015)CrossRefGoogle Scholar
  184. 184.
    Pham, M.-H., Vuong, G.-T., Fontaine, F.-G., Do, T.-O.: Rational synthesis of metal-organic framework nanocubes and nanosheets using selective modulators and their morphology-dependent gas-sorption properties. Cryst. Growth Des. 12, 3091 (2012)CrossRefGoogle Scholar
  185. 185.
    Peng, Y., Li, Y., Ban, Y., Yang, W.: Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed. 56, 9757 (2017)CrossRefGoogle Scholar
  186. 186.
    Campbell, M.G., Sheberla, D., Liu, S.F., Swager, T.M., Dinca, M.: Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54, 4349 (2015)CrossRefGoogle Scholar
  187. 187.
    Campbell, M.G., Liu, S.F., Swager, T.M., Dinca, M.: Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137, 13780 (2015)CrossRefGoogle Scholar
  188. 188.
    Falcaro, P., Ricco, R., Yazdi, A., Imaz, I., Furukawa, S., Maspoch, D., Ameloot, R., Evans, J.D., Doonan, C.J.: Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 307, 237 (2016)CrossRefGoogle Scholar
  189. 189.
    Koo, W.T., Choi, S.J., Kim, S.J., Jang, J.S., Tuller, H.L., Kim, I.D.: Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber Scaffold toward superior gas sensors. J. Am. Chem. Soc. 138, 13431 (2016)CrossRefGoogle Scholar
  190. 190.
    Koo, W.T., Jang, J.S., Choi, S.J., Cho, H.J., Kim, I.D.: Metal-organic framework templated catalysts: dual sensitization of PdO–ZnO composite on hollow SnO2 nanotubes for selective acetone sensors. ACS Appl. Mater. Interfaces 9, 18069 (2017)CrossRefGoogle Scholar
  191. 191.
    Koo, W.T., Yu, S., Choi, S.J., Jang, J.S., Cheong, J.Y., Kim, I.D.: Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath. ACS Appl. Mater. Interfaces 9, 8201 (2017)CrossRefGoogle Scholar
  192. 192.
    Koo, W.T., Choi, S.J., Jang, J.S., Kim, I.D.: Metal-organic framework templated synthesis of ultrasmall catalyst loaded ZnO/ZnCo2O4 hollow spheres for enhanced gas sensing properties. Sci. Rep. 7, 45074 (2017)CrossRefGoogle Scholar
  193. 193.
    Jang, J.S., Koo, W.T., Choi, S.J., Kim, I.D.: Metal organic framework-templated chemiresistor: sensing type transition from P-to-N Using hollow metal oxide polyhedron via galvanic replacement. J. Am. Chem. Soc. 139, 11868 (2017)CrossRefGoogle Scholar
  194. 194.
    Eswaraiah, V., Zeng, Q., Long, Y., Liu, Z.: Black phosphorus nanosheets: synthesis, characterization and applications. Small 12, 3480 (2016)CrossRefGoogle Scholar
  195. 195.
    Hanlon, D., Backes, C., Doherty, E., Cucinotta, C.S., Berner, N.C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q.M., McEvoy, N., Blau, W.J., Wang, J., Abellan, G., Hauke, F., Hirsch, A., Sanvito, S., O’Regan, D.D., Duesberg, G.S., Nicolosi, V., Coleman, J.N.: Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015)CrossRefGoogle Scholar
  196. 196.
    Cui, S., Pu, H., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., Chen, J.: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632 (2015)CrossRefGoogle Scholar
  197. 197.
    Abbas, A.N., Liu, B.L., Chen, L., Ma, Y.Q., Cong, S., Aroonyadet, N., Kopf, M., Nilges, T., Zhou, C.W.: Black phosphorus gas sensors. ACS Nano 9, 5618 (2015)CrossRefGoogle Scholar
  198. 198.
    Cho, S.Y., Lee, Y., Koh, H.J., Jung, H., Kim, J.S., Yoo, H.W., Kim, J., Jung, H.T.: Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28, 7020 (2016)CrossRefGoogle Scholar
  199. 199.
    Yasaei, P., Behranginia, A., Foroozan, T., Asadi, M., Kim, K., Khalili-Araghi, F., Salehi-Khojin, A.: Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 9, 9898 (2015)CrossRefGoogle Scholar
  200. 200.
    Erande, M.B., Pawar, M.S., Late, D.J.: Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces 8, 11548 (2016)CrossRefGoogle Scholar
  201. 201.
    Late, D.J.: Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mater. 225, 494 (2016)CrossRefGoogle Scholar
  202. 202.
    Miao, J., Cai, L., Zhang, S., Nah, J., Yeom, J., Wang, C.: Air-stable humidity sensor using few-layer black phosphorus. ACS Appl. Mater. Interfaces 9, 10019 (2017)CrossRefGoogle Scholar
  203. 203.
    Cho, S.-Y., Koh, H.-J., Yoo, H.-W., Jung, H.-T.: Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 29, 7197 (2017)CrossRefGoogle Scholar
  204. 204.
    Zhao, Y., Wang, H., Huang, H., Xiao, Q., Xu, Y., Guo, Z., Xie, H., Shao, J., Sun, Z., Han, W., Yu, X.F., Li, P., Chu, P.K.: Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55, 5003 (2016)CrossRefGoogle Scholar
  205. 205.
    Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S., Castellanos-Gomez, A.: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347 (2014)CrossRefGoogle Scholar
  206. 206.
    Hao, C., Wen, F., Xiang, J., Yuan, S., Yang, B., Li, L., Wang, W., Zeng, Z., Wang, L., Liu, Z., Tian, Y.: Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv. Funct. Mater. 26, 2016 (2016)CrossRefGoogle Scholar
  207. 207.
    Hu, J., Guo, Z., McWilliams, P.E., Darges, J.E., Druffel, D.L., Moran, A.M., Warren, S.C.: Band gap engineering in a 2D material for solar-to-chemical energy conversion. Nano Lett. 16, 74 (2016)CrossRefGoogle Scholar
  208. 208.
    Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y.: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992 (2014)CrossRefGoogle Scholar
  209. 209.
    Barsoum, M.W.: MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, vol. 1. Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken (2013)CrossRefGoogle Scholar
  210. 210.
    Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., Barsoum, M.W.: Two-dimensional transition metal carbides. ACS Nano 6, 1322 (2012)CrossRefGoogle Scholar
  211. 211.
    Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRefGoogle Scholar
  212. 212.
    Naguib, M., Halim, J., Lu, J., Cook, K.M., Hultman, L., Gogotsi, Y., Barsoum, M.W.: New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966 (2013)CrossRefGoogle Scholar
  213. 213.
    Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., Rozier, P., Taberna, P.L., Naguib, M., Simon, P., Barsoum, M.W., Gogotsi, Y.: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502 (2013)CrossRefGoogle Scholar
  214. 214.
    Xie, X., Chen, S., Ding, W., Nie, Y., Wei, Z.: An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 49, 10112 (2013)CrossRefGoogle Scholar
  215. 215.
    Zhu, J., Ha, E., Zhao, G., Zhou, Y., Huang, D., Yue, G., Hu, L., Sun, N., Wang, Y., Lee, L.Y.S., Xu, C., Wong, K.-Y., Astruc, D., Zhao, P.: Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306 (2017)CrossRefGoogle Scholar
  216. 216.
    Yu, X.F., Li, Y.C., Cheng, J.B., Liu, Z.B., Li, Q.Z., Li, W.Z., Yang, X., Xiao, B.: Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7, 13707 (2015)CrossRefGoogle Scholar
  217. 217.
    Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataramanan, N.S., Estili, M., Sakka, Y., Kawazoe, Y.: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185 (2013)CrossRefGoogle Scholar
  218. 218.
    Lee, E., VahidMohammadi, A., Prorok, B.C., Yoon, Y.S., Beidaghi, M., Kim, D.J.: Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184 (2017)CrossRefGoogle Scholar
  219. 219.
    Kumar, N.A., Dar, M.A., Gul, R., Baek, J.-B.: Graphene and molybdenum disulfide hybrids: synthesis and applications. Mater. Today 18, 286 (2015)CrossRefGoogle Scholar
  220. 220.
    Tan, C., Zhang, H.: Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137, 12162 (2015)CrossRefGoogle Scholar
  221. 221.
    Chen, Z.-W., Hong, Y.-Y., Lin, Z.-D., Liu, L.-M., Zhang, X.-W.: Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electron. Mater. Lett. 13, 270 (2017)CrossRefGoogle Scholar
  222. 222.
    Hoa, L.T., Tien, H.N., Luan, V.H., Chung, J.S., Hur, S.H.: Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sens. Actuators B 185, 701 (2013)CrossRefGoogle Scholar
  223. 223.
    Shi, J., Cheng, Z., Gao, L., Zhang, Y., Xu, J., Zhao, H.: Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B 230, 736 (2016)CrossRefGoogle Scholar
  224. 224.
    Cho, B., Yoon, J., Lim, S.K., Kim, A.R., Kim, D.H., Park, S.G., Kwon, J.D., Lee, Y.J., Lee, K.H., Lee, B.H., Ko, H.C., Hahm, M.G.: Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 7, 16775 (2015)CrossRefGoogle Scholar
  225. 225.
    Long, H., Harley-Trochimczyk, A., Pham, T., Tang, Z., Shi, T., Zettl, A., Carraro, C., Worsley, M.A., Maboudian, R.: High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26, 5158 (2016)CrossRefGoogle Scholar
  226. 226.
    Cho, B., Kim, A.R., Kim, D.J., Chung, H.S., Choi, S.Y., Kwon, J.D., Park, S.W., Kim, Y., Lee, B.H., Lee, K.H., Kim, D.H., Nam, J., Hahm, M.G.: Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor. ACS Appl. Mater. Interfaces 8, 19635 (2016)CrossRefGoogle Scholar
  227. 227.
    Bao, J., Jeppson, K., Edwards, M., Fu, Y., Ye, L., Lu, X., Liu, J.: Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing. Electron. Mater. Lett. 12, 1 (2016)CrossRefGoogle Scholar
  228. 228.
    Constantinescu, G.C., Hine, N.D.: Multipurpose black-phosphorus/hBN heterostructures. Nano Lett. 16, 2586 (2016)CrossRefGoogle Scholar
  229. 229.
    Gao, G., Gao, W., Cannuccia, E., Taha-Tijerina, J., Balicas, L., Mathkar, A., Narayanan, T.N., Liu, Z., Gupta, B.K., Peng, J., Yin, Y., Rubio, A., Ajayan, P.M.: Artificially stacked atomic layers: toward new van der Waals solids. Nano Lett. 12, 3518 (2012)CrossRefGoogle Scholar
  230. 230.
    Das, S., Gulotty, R., Sumant, A.V., Roelofs, A.: All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.Advanced Nanosensor Research Center, KAIST Institute for the NanoCentury, KAISTDaejeonRepublic of Korea

Personalised recommendations