Advertisement

Electronic Materials Letters

, Volume 14, Issue 3, pp 357–362 | Cite as

Photoresponse and Field Effect Transport Studies in InAsP–InP Core–Shell Nanowires

  • Rochelle Lee
  • Min Hyeok Jo
  • TaeWan Kim
  • Hyo Jin Kim
  • Doo Gun Kim
  • Jae Cheol ShinEmail author
Article

Abstract

A ternary InAsyP1−y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1−y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core–shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core–shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

Keywords

InAsP III–V semiconductor Nanowires Passivation Core–shell structure 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2017R1C1B2010906 and NRF-2017M1A2A2048904) and was a part of the project titled ‘Development of real-time measuring system of basic environment for the water quality monitoring of the aquaculture farm,’ funded by the Ministry of Oceans and Fisheries, Korea (No. 20150303).

References

  1. 1.
    Allen, J.E., Hemesath, E.R., Perea, D.E., Lensch-Falk, J.L., Li, Z., Yin, F., Gass, M.H., Wang, P., Bleloch, A.L., Palmer, R.E., Lauhon, L.J.: High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168–173 (2008)CrossRefGoogle Scholar
  2. 2.
    Breuer, S., Pfüller, C., Flissikowski, T., Brandt, O., Grahn, H.T., Geelhaar, L., Riechert, H.: Suitability of Au-and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett. 11, 1276–1279 (2011)CrossRefGoogle Scholar
  3. 3.
    Chang, C.-C., Chi, C.-Y., Yao, M., Huang, N., Chen, C.-C., Theiss, J., Bushmaker, A.W., LaLumondiere, S., Yeh, T.-W., Povinelli, M.L.: Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 12, 4484–4489 (2012)CrossRefGoogle Scholar
  4. 4.
    Choi, C.H., Kim, H., Hwang, J., Cho, M., Shin, J.C.: Electrical properties of InAs/InP core–shell nanowires. J. Nanosci. Nanotechnol. 16, 11535–11537 (2016)CrossRefGoogle Scholar
  5. 5.
    Cornet, C., Schliwa, A., Even, J., Doré, F., Celebi, C., Létoublon, A., Macé, E., Paranthoen, C., Simon, A., Koenraad, P.: Electronic and optical properties of InAs/InP quantum dots on InP (100) and InP (311) B substrates: theory and experiment. Phys. Rev. B 74, 035312 (2006)CrossRefGoogle Scholar
  6. 6.
    Dai, X., Zhang, S., Wang, Z., Adamo, G., Liu, H., Huang, Y., Couteau, C., Soci, C.: GaAs/AlGaAs nanowire photodetector (2016). arXiv preprint arXiv:1601.02312
  7. 7.
    Demarina, N., Grützmacher, D.: Influence of surface states on electronic band structure and electron density in InAs nanowires and InAs shell nanowires. ECS Trans. 64, 95–99 (2014)CrossRefGoogle Scholar
  8. 8.
    Holloway, G.W., Song, Y., Haapamaki, C.M., LaPierre, R.R., Baugh, J.: Electron transport in InAs–InAlAs core–shell nanowires. Appl. Phys. Lett. 102, 043115 (2013)CrossRefGoogle Scholar
  9. 9.
    Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., Lieber, C.M.: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214–3218 (2007)CrossRefGoogle Scholar
  10. 10.
    Kasanaboina, P.K., Ojha, S.K., Sami, S.U., Reynolds, L., Liu, Y., Iyer, S.: Tailoring of GaAs/GaAsSb Core–Shell Structured Nanowires for IR Photodetector Applications, pp. 937307–937309. International Society for Optics and Photonics, Bellingham (2015)Google Scholar
  11. 11.
    Kavanagh, K.L., Saveliev, I., Blumin, M., Swadener, G., Ruda, H.E.: Faster radial strain relaxation in InAs–GaAs core–shell heterowires. J. Appl. Phys. 111, 044301 (2012)CrossRefGoogle Scholar
  12. 12.
    Kawaguchi, K., Sudo, H., Matsuda, M., Takemoto, K., Yamamoto, T., Arakawa, Y.: Radial InP/InAsP/InP heterostructure nanowires on patterned Si substrates using self-catalyzed growth for vertical-type optical devices. Appl. Phys. Lett. 106, 0120107 (2015)CrossRefGoogle Scholar
  13. 13.
    Li, H.-Y., Wunnicke, O., Borgström, M., Immink, W., Van Weert, M., Verheijen, M., Bakkers, E.: Remote p-doping of InAs nanowires. Nano Lett. 7, 1144–1148 (2007)CrossRefGoogle Scholar
  14. 14.
    Lin, A., Shapiro, J.N., Scofield, A.C., Liang, B., Huffaker, D.L.: Enhanced InAs nanopillar electrical transport by in situ passivation. Appl. Phys. Lett. 102, 053115 (2013)CrossRefGoogle Scholar
  15. 15.
    Manual A Us: Device Simulation Software. Silvaco Int, Santa Clara (2008)Google Scholar
  16. 16.
    Popovitz-Biro, R., Kretinin, A., Von Huth, P., Shtrikman, H.: InAs/GaAs core–shell nanowires. Cryst. Growth Des. 11, 3858–3865 (2011)CrossRefGoogle Scholar
  17. 17.
    Rieger, T., Luysberg, M., Schäpers, T., Grützmacher, D., Lepsa, M.I.: Molecular beam epitaxy growth of GaAs/InAs core–shell nanowires and fabrication of InAs nanotubes. Nano Lett. 12, 5559–5564 (2012)CrossRefGoogle Scholar
  18. 18.
    Shin, J.C., Lee, A., Katal Mohseni, P., Kim, D.Y., Yu, L., Kim, J.H., Kim, H.J., Choi, W.J., Wasserman, D., Choi, K.J., Li, X.: Wafer-scale production of uniform InAsyP1−y nanowire array on silicon for heterogeneous integration. ACS Nano 7, 5463–5471 (2013)CrossRefGoogle Scholar
  19. 19.
    Shin, J.C., Lee, A., Kim, H.J., Kim, J.H., Choi, K.J., Kim, Y.H., Kim, N., Bae, M.-H., Kim, J.-J., Kim, B.-K.: Growth characteristics and electrical properties of diameter-selective InAs nanowires. J. Korean Phys. Soc. 62, 1678–1682 (2013)CrossRefGoogle Scholar
  20. 20.
    Tchernycheva, M., Cirlin, G.E., Patriarche, G., Travers, L., Zwiller, V., Perinetti, U., Harmand, J.-C.: Growth and characterization of InP nanowires with InAsP insertions. Nano Lett. 7, 1500–1504 (2007)CrossRefGoogle Scholar
  21. 21.
    Tretiak, S., Piryatinski, A.: Modeling photoexcited carrier interactions in semiconductor nanostructures. Nano Lett. 5, 865–871 (2005)CrossRefGoogle Scholar
  22. 22.
    Treu, J., Bormann, M., Schmeiduch, H., Döblinger, M., Morkötter, S., Matich, S., Wiecha, P., Saller, K., Mayer, B., Bichler, M.: Enhanced luminescence properties of InAs–InAsP core–shell nanowires. Nano Lett. 13, 6070–6077 (2013)CrossRefGoogle Scholar
  23. 23.
    Van Tilburg, J., Algra, R., Immink, W., Verheijen, M., Bakkers, E., Kouwenhoven, L.: Surface passivated InAs/InP core/shell nanowires. Semicond. Sci. Technol. 25, 024011 (2010)CrossRefGoogle Scholar
  24. 24.
    Woodall, J.M., Pettit, G.D., Jackson, T.N., Lanza, C., Kavanagh, K.L., Mayer, J.W.: Fermi-level pinning by misfit dislocations at GaAs interfaces. Phys. Rev. Lett. 51, 1783–1786 (1983)CrossRefGoogle Scholar
  25. 25.
    Xie, S., Kim, H., Lee, W.J., Farrell, A.C., David, J.P., Huffaker, D.L.: InAs/InAsP core/shell nanowire photodiode on a Si substrate. Nano Adv. 1, 110–114 (2016)Google Scholar
  26. 26.
    Zhang, Y., Wu, J., Aagesen, M., Liu, H.: III–V nanowires and nanowire optoelectronic devices. J. Phys. D Appl. Phys. 48, 463001 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Rochelle Lee
    • 1
  • Min Hyeok Jo
    • 1
  • TaeWan Kim
    • 2
  • Hyo Jin Kim
    • 3
  • Doo Gun Kim
    • 3
  • Jae Cheol Shin
    • 1
    Email author
  1. 1.Department of PhysicsYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Advanced Instrumentation InstituteKorea Research Institute of Standards and Science (KRISS)DaejeonKorea
  3. 3.Korea Photonics Technology Institute (KOPTI)GwangjuRepublic of Korea

Personalised recommendations