Electronic Materials Letters

, Volume 14, Issue 2, pp 199–206 | Cite as

Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1−xSnx)2Te3

  • Chan-Chieh Lin
  • Won Hyuk Shon
  • Lydia Rathnam
  • Jong-Soo Rhyee
Article
  • 66 Downloads

Abstract

We investigated the thermoelectric properties of Sn-doped (Bi1−xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.

Graphical Abstract

Keywords

Thermoelectric Sn-doped Bi2Te3 Topological insulator Weak antilocalization 

Notes

Acknowledgements

This work was supported by the Samsung Research Funding Centre of Samsung Electronics under Project Number SRFC-TA1403-02.

References

  1. 1.
    Greenaway, D.L., Harbeke, G.: Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Phys. Chem. Solids 26, 1585 (1965)CrossRefGoogle Scholar
  2. 2.
    Wu, F., Shi, W., Hu, X.: Preparation and thermoelectric properties of flower-like nanoparticles of Ce-doped Bi2Te3. Electron. Mater. Lett. 11, 127 (2015)CrossRefGoogle Scholar
  3. 3.
    Kim, H., Lee, J.K., Park, S.-D., Ryu, B., Lee, J.E., Kim, B.-S., Min, B.-K., Joo, S.-J., Lee, H.-W., Cho, Y.-R.: Enhanced thermoelectric properties and development of nanotwins in Na-doped Bi0.5Sb1.5Te3 alloy. Electron. Mater. Lett. 12, 290 (2016)CrossRefGoogle Scholar
  4. 4.
    Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y., Cava, R.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009)CrossRefGoogle Scholar
  5. 5.
    Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009)CrossRefGoogle Scholar
  6. 6.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)CrossRefGoogle Scholar
  7. 7.
    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)CrossRefGoogle Scholar
  8. 8.
    Alpichshev, Z., Analytis, J.G., Chu, J.H., Fisher, I.R., Chen, Y.L., Shen, Z.X., Fang, A., Kapitulnik, A.: STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 104, 016401 (2010)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Chu, J.-H., Analytis, J., Liu, Z., Igarashi, K., Kuo, H.-H., Qi, X., Mo, S.-K., Moore, R., Lu, D.: Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.L., Liu, Z.K., Analytis, J.G., Chu, J.H., Zhang, H.J., Yan, B.H., Mo, S.K., Moore, R.G., Lu, D.H., Fisher, I.R., Zhang, S.C., Hussain, Z., Shen, Z.X.: Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010)CrossRefGoogle Scholar
  11. 11.
    Cheng, P., Song, C., Zhang, T., Zhang, Y., Wang, Y., Jia, J.F., Wang, J., Wang, Y., Zhu, B.F., Chen, X., Ma, X., He, K., Wang, L., Dai, X., Fang, Z., Xie, X., Qi, X.L., Liu, C.X., Zhang, S.C., Xue, Q.K.: Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 105, 076801 (2010)CrossRefGoogle Scholar
  12. 12.
    Hanaguri, T., Igarashi, K., Kawamura, M., Takagi, H., Sasagawa, T.: Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 82, 081305(R) (2010)CrossRefGoogle Scholar
  13. 13.
    Roushan, P., Seo, J., Parker, C.V., Hor, Y.S., Hsieh, D., Qian, D., Richardella, A., Hasan, M.Z., Cava, R.J., Yazdani, A.: Topological surface states protected from backscattering by chiral spin texture. Nature (London) 460, 1106 (2009)CrossRefGoogle Scholar
  14. 14.
    Analytis, J.G., McDonald, R.D., Riggs, S.C., Chu, J.-H., Boebinger, G.S., Fisher, I.R.: Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys. 6, 960 (2010)CrossRefGoogle Scholar
  15. 15.
    Checkelsky, J.G., Hor, Y.S., Liu, M.H., Qu, D.X., Cava, R.J., Ong, N.P.: Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. Phys. Rev. Lett. 103, 246601 (2009)CrossRefGoogle Scholar
  16. 16.
    Peng, H., Lai, K., Kong, D., Meister, S., Chen, Y., Qi, X.L., Zhang, S.C., Shen, Z.X., Cui, Y.: Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225 (2010)CrossRefGoogle Scholar
  17. 17.
    Takahashi, R., Murakami, S.: Gapless interface states between topological insulators with opposite Dirac velocities. Phys. Rev. Lett. 107, 166805 (2011)CrossRefGoogle Scholar
  18. 18.
    Neupane, M., Xu, S.-Y., Wray, L.A., Petersen, A., Shankar, R., Alidoust, N., Liu, C., Fedorov, A., Ji, H., Allred, J.M., Hor, Y.S., Chang, T.-R., Jeng, H.-T., Lin, H., Bansil, A., Cava, R.J., Hasan, M.Z.: Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 85, 235406 (2012)CrossRefGoogle Scholar
  19. 19.
    Qu, D.-X., Hor, Y., Xiong, J., Cava, R., Ong, N.P.: Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 329, 821 (2010)CrossRefGoogle Scholar
  20. 20.
    Ren, Z., Taskin, A.A., Sasaki, S., Segawa, K., Ando, Y.: Observations of two-dimensional quantum oscillations and ambipolar transport in the topological insulator Bi2Se3 achieved by Cd doping. Phys. Rev. B 84, 075316 (2011)CrossRefGoogle Scholar
  21. 21.
    Chi, H., Liu, W., Sun, K., Su, X., Wang, G., Lost’ak, P., Kucek, V., Drasar, C., Uher, C.: Low-temperature transport properties of Tl-doped Bi2Te3 single crystals. Phys. Rev. B 88, 045202 (2013)CrossRefGoogle Scholar
  22. 22.
    Chen, Y., Analytis, J., Chu, J.-H., Liu, Z., Mo, S.-K., Qi, X.-L., Zhang, H., Lu, D., Dai, X., Fang, Z.: Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009)CrossRefGoogle Scholar
  23. 23.
    Xiao, Y., Chen, G., Qin, H., Wu, M., Xiao, Z., Jiang, J., Xu, J., Jiang, H., Xu, G.: Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition. J. Mater. Chem. A 2, 8512 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhang, T., Jiang, J., Xiao, Y., Zhai, Y., Yang, S., Xu, G.: In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance. ACS Appl. Mater. Interfaces 5, 3071 (2013)CrossRefGoogle Scholar
  25. 25.
    Goldsmid, H.J.: The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. 4, 633 (1958)CrossRefGoogle Scholar
  26. 26.
    Shigetomi, S., Mori, S.: Electrical properties of Bi2Te3. J. Phys. Soc. Jpn. 11, 915 (1956)CrossRefGoogle Scholar
  27. 27.
    Zhitinskaya, M.K., Nemov, S.A., Ivanova, L.D.: The Nernst–Ettingshausen, Seebeck, and Hall effects in Sb2Te3 single crystals. Phys. Solid State 44, 42 (2002)CrossRefGoogle Scholar
  28. 28.
    Starý, Z., Horak, J., Stordeur, M., Stölzer, M.: Antisite defects in Sb2−xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 29 (1988)CrossRefGoogle Scholar
  29. 29.
    Singleton, J.: Band Theory and Electronic Properties of Solid. Oxford University Press, Oxford (2001)Google Scholar
  30. 30.
    Hikami, S., Larkin, A.I., Nagaoka, Y.: Spin–orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63, 2 (1980)Google Scholar
  31. 31.
    Xu, G., Wang, W., Zhang, X., Du, Y., Liu, E., Wang, S., Wu, G., Liu, Z., Zhang, X.X.: Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi. Sci. Rep. 4, 5709 (2014)CrossRefGoogle Scholar
  32. 32.
    Lu, H.-Z., Shen, S.-Q.: Weak localization of bulk channels in topological insulator thin films. Phys. Rev. B 84, 125138 (2011)CrossRefGoogle Scholar
  33. 33.
    Andrew, F.M., Snyder, G.J.: Introduction to Modeling Thermoelectric Transport at High Temperatures. CRC Press, New York (2012)Google Scholar
  34. 34.
    Lin, C.-C., Ginting, D., Lydia, R., Lee, M.H., Rhyee, J.-S.: Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. J. Alloy. Compd. 671, 538 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Chan-Chieh Lin
    • 1
  • Won Hyuk Shon
    • 1
  • Lydia Rathnam
    • 1
  • Jong-Soo Rhyee
    • 1
  1. 1.Department of Applied Physics and Institute of Natural SciencesKyung Hee UniversityYonginKorea

Personalised recommendations