Advertisement

Sol–Gel Driving LiFe(MoO4)2 Microcrystals: High Capacity and Superior Cycling Stability for Anode Material in Lithium Ion Batteries

  • Li Wang
  • Yuanchuan He
  • Yanlin Mu
  • Bo Wu
  • Mengjiao Liu
  • Yan ZhaoEmail author
  • Xin Lai
  • Jian Bi
  • Daojiang GaoEmail author
Original Article - Energy and Sustainability
  • 13 Downloads

Abstract

LiFe(MoO4)2 microcrystals have been fabricated via a facile sol–gel driving process. The obtained LiFe(MoO4)2 microcrystals are characterized through X-ray diffraction, thermal analysis, scanning electron microscope, transmission electron microscope and high resolution transmission electron microscope. The results demonstrate that the as-synthesized microcrystals possess triclinic structure and exhibit uniform particle size of 1–2 μm. When served as anode material for lithium ion batteries, LiFe(MoO4)2 microcrystals display a very high specific capacity of 925 mAh g−1 at a current rate of 1 C after 500 cycles and a high retention rate of 88%, showing superior electrochemical performance.

Graphical Abstract

Keywords

LiFe(MoO4)2 microcrystals Sol–gel High capacity Superior cycling stability 

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC, No. 51551202), the Scientific Research Fund of Sichuan Provincial Education Department of Sichuan province (Grant No. 17ZA0325), and Open Foundation of Key Laboratory of Sichuan Province Higher Education Systems (SWWT2016-3).

References

  1. 1.
    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nature 407, 495 (2000)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Zheng, S.S., Wang, L., Tang, H., Xue, H.G., Wang, G.X., Pang, H.: Small 13, 1700917 (2017)CrossRefGoogle Scholar
  3. 3.
    Mei, L., Mao, M.L., Chou, S.L., Liu, H.K., Dou, S.X., Ng, Dickon H.L., Ma, J.M.: J. Mater. Chem. A 3, 21699 (2015)CrossRefGoogle Scholar
  4. 4.
    Mo, Y.D., Ru, Q., Song, X., Chen, J.F., Hou, X.H., Hu, S.J., Guo, L.Y.: RSC Adv. 6, 31925 (2016)CrossRefGoogle Scholar
  5. 5.
    Masquelier, C., Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: J. Solid State Chem. 135, 228 (1998)CrossRefGoogle Scholar
  6. 6.
    Nanjundaswamy, K.S., Padhi, A.K., Goodenough, J.B., Okada, S., Ohtsuka, H., Arai, H., Yamaki, J.: Solid State Ion. 92, 1 (1996)CrossRefGoogle Scholar
  7. 7.
    Devi, M., Varadaraju, U.V.: Electrochem. Commun. 18, 112 (2012)CrossRefGoogle Scholar
  8. 8.
    Qin, X., Wang, X.H., Xiang, H.M., Xie, J., Li, J.J., Zhou, Y.C.: J. Phys. Chem. C 114, 16806 (2010)CrossRefGoogle Scholar
  9. 9.
    Singh, S., Raj, A.K., Sen, R., Johari, P., Mitra, S.: ACS Appl. Mater. Interfaces 9, 26885 (2017)CrossRefGoogle Scholar
  10. 10.
    Guo, X.W., Fang, X.P., Mao, Y., Wang, Z.X., Wu, F., Chen, L.Q.: J. Phys. Chem. C 115, 3803 (2011)CrossRefGoogle Scholar
  11. 11.
    Xu, Y., Li, Y.J., Liu, S.Q., Li, H.L., Liu, Y.N.: J. Power Sources 220, 103 (2012)CrossRefGoogle Scholar
  12. 12.
    Kalaiselvi, N., Doh, C.H., Park, C.W., Moon, S.I., Yun, M.S.: Electrochem. Commun. 6, 1110 (2004)CrossRefGoogle Scholar
  13. 13.
    Liang, E.Q., Song, L.J., Liu, S.S., Guo, Y., Yu, B.J., Wang, C.Y., Li, M.W.: Int. J. Electrochem. Sci. 12, 5320 (2017)CrossRefGoogle Scholar
  14. 14.
    Chen, N., Yao, Y., Wang, D.X., Wei, Y.J., Bie, X.F., Wang, C.Z., Chen, G., Du, F.: ACS Appl. Mater. Interfaces 6, 10661 (2014)CrossRefGoogle Scholar
  15. 15.
    Van der Lee, A., Beaurain, M., Armand, P.: Acta Cryst. C64, i1 (2008)Google Scholar
  16. 16.
    Gong, C., Bai, Y.J., Feng, J., Tang, R., Qi, Y.X., Lun, N., Fan, R.H.: ACS Appl. Mater. Interfaces 5, 4209 (2013)CrossRefGoogle Scholar
  17. 17.
    Wang, W., Hu, L.W., Ge, J.B., Hu, Z.Q., Sun, H.B., Sun, H., Zhang, H.Q., Zhu, H.M., Jiao, S.Q.: Chem. Mater. 26, 3721 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, Z.Y., Li, W.Y., Ng, T.W., Kang, W.P., Lee, C.S., Zhang, W.J.: J. Mater. Chem. A 3, 20527 (2015)CrossRefGoogle Scholar
  19. 19.
    Alvarez-Vega, M., Amador, U., Arroyo-de Dompablo, M.E.: J. Electrochem. Soc. 152, A1306 (2005)CrossRefGoogle Scholar
  20. 20.
    Cherian, C.T., Reddy, M.V., Haur, S.C., Chowdari, B.V.R.: ACS Appl. Mater. Interfaces 5, 918 (2013)CrossRefGoogle Scholar
  21. 21.
    Liu, S., Sun, Y.H., Dong, P.P., Nan, J.M.: Mater. Sci. Eng. B 202, 15 (2015)CrossRefGoogle Scholar
  22. 22.
    Guan, B.Q., Sun, W.W., Wang, Y.: Electrochim. Acta 190, 354 (2016)CrossRefGoogle Scholar
  23. 23.
    Liu, M.J., Wang, L., Mu, Y.L., Ma, J.M., Zhao, Y., Wang, Y., Lai, X., Bi, J., Gao, D.J.: Scr. Mater. 146, 13 (2018)CrossRefGoogle Scholar
  24. 24.
    Yao, J., Wang, X.L., Zhao, X.R., Wang, J.X., Zhang, H.B., Yu, W.S., Liu, G.X., Dong, X.T.: Electron. Mater. Lett. 12, 804 (2016)CrossRefGoogle Scholar
  25. 25.
    Dou, Y.F., Liang, X., Gao, G.H., Wu, G.M.: J. Alloys Compd. 735, 109 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduPeople’s Republic of China
  2. 2.Sichuan Province Key Laboratory of Information Materials and Devices ApplicationChengdu University of Information TechnologyChengduPeople’s Republic of China

Personalised recommendations