Advertisement

Electronic Materials Letters

, Volume 15, Issue 1, pp 119–132 | Cite as

Two-Step Facile Preparation of MoS2·ZnO Nanocomposite as Efficient Photocatalyst for Methylene Blue (Dye) Degradation

  • Sanni Kapatel
  • C. K. SumeshEmail author
Original Article – Nanomaterials
  • 131 Downloads

Abstract

In this work, we report the synthesis of binary semiconductor nanocomposite (NC) comprising spherical ZnO nanoparticles stacked with two-dimensional MoS2 nanosheets, utilizing a facile microwave assisted synthesis technique. The fabricated product was characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy instrument, scanning electron microscopy, Raman spectroscopy, energy-dispersive X-ray spectroscopy (EDAX), inductively coupled plasma analysis and Fourier transform infrared spectroscopy to distinguish the structure and morphology of arranged NC. Ultraviolet–visible spectroscopy was used to understand the optical properties of MoS2·ZnO NC. Optical transmission spectra gave a distinct red shift in the band gap of ZnO after making composition with MoS2 nanosheets which eventually shows higher retention of visible light. This occurs due to effective separation of photogenerated charge carriers and rapid charge transfer to reactions sites of conduction band potentials of both ZnO and MoS2 both. We plot that MoS2·ZnO NC has a band gap of 2.73 eV which is fundamentally a long way from the band gap of ZnO (~ 3.3 eV). The outcomes recommended the effective fading out of methylene blue (more than 95%) in 1 h on the illumination of visible light. Besides, the association of MoS2 prevents photo-corrosion of the ZnO bringing about upgraded photostability of the catalyst during the reaction. Moreover, we presented a recyclability test of the photocatalyst for five subsequent times to get the efficient dye degradation.

Graphical Abstract

Keywords

MoS2·ZnO nanocomposite Photocatalysis Dye degradation Visible light 

Notes

Acknowledgements

The authors are grateful to Charotar University of Science and Technology (CHARUSAT)-Changa for providing research facilities. We would like to acknowledge ANALUBE lab, CHARUSAT for providing ICP measurement facility. We also acknowledge the use of facilities at the Central Salt and Marine Chemicals Research Institute, Bhavnagar for Raman and TEM data and SICART, SPU, V.V. Nagar for EDAX analysis.

References

  1. 1.
    Anliker, R.: Ecotoxicology of dyestuffs: a joint effort by industry. Ecotoxicol. Environ. Saf. 3(1), 59–74 (1979)CrossRefGoogle Scholar
  2. 2.
    Shore, J.: Advances in direct dyes. Indian J. Fibre Text. Res. 21(1), 1–29 (1996)Google Scholar
  3. 3.
    Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., Nadeem, M.A.: Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4(70), 37003–37026 (2014)CrossRefGoogle Scholar
  4. 4.
    Khan, S.A., Khan, S.B., Asiri, A.M.: Layered double hydroxide of Cd–Al/C for the mineralization and de-coloration of dyes in solar and visible light exposure. Sci. Rep. 6(11), 14–18 (2016)Google Scholar
  5. 5.
    Ayodhya, D., Venkatesham, M., Santoshi Kumari, A., Reddy, G.B., Ramakrishna, D., Veerabhadram, G.: Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles. J. Exp. Nanosci. 11(6), 418–432 (2016)CrossRefGoogle Scholar
  6. 6.
    Legrini, O., Oliveros, E., Braun, A.M.: photochemical processes for water treatment. Chem. Rev. 93(2), 671–698 (1993)CrossRefGoogle Scholar
  7. 7.
    Chakrabarti, S., Dutta, B.K.: Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269–278 (2004)CrossRefGoogle Scholar
  8. 8.
    Shokouhimehr, M., Asl, M.S., Mazinani, B.: Modulated large-pore mesoporous silica as an efficient base catalyst for the Henry reaction. Res. Chem. Intermed. 44(3), 1617–1626 (2018)CrossRefGoogle Scholar
  9. 9.
    Haghighatzadeh, A., Mazinani, B., Shokouhimehr, M., Samiee, L.: Preparation of mesoporous TiO2 by ultrasonic impregnation method and effect of its calcination temperature on photocatalytic activity. Desalin. Water Treat. 92, 21481 (2017)Google Scholar
  10. 10.
    Mirtaheri, B., Shokouhimehr, M., Beitollahi, A.: Synthesis of mesoporous tungsten oxide by template-assisted sol–gel method and its photocatalytic degradation activity. J. Sol Gel Sci. Technol. 82(1), 148–156 (2017)CrossRefGoogle Scholar
  11. 11.
    Linsebigler, A.L., Lu, G., Yates, J.T.: Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)CrossRefGoogle Scholar
  12. 12.
    Muhd Julkapli, N., Bagheri, S., Bee Abd Hamid, S.: Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 14, 692307 (2014)Google Scholar
  13. 13.
    Khan, M.E., Khan, M.M., Cho, M.H.: Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2–graphene nanostructures. Sci. Rep. 7(1), 1–17 (2017)CrossRefGoogle Scholar
  14. 14.
    Di Mauro, A., Cantarella, M., Nicotra, G., Pellegrino, G., Gulino, A., Brundo, M.V., Privitera, V., Impellizzeri, G.: Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Sci. Rep. 7(December 2016), 1–12 (2017)Google Scholar
  15. 15.
    Sardar, S., Kar, P., Sarkar, S., Lemmens, P., Pal, S.K.: Interfacial carrier dynamics in PbS–ZnO light harvesting assemblies and their potential implication in photovoltaic/photocatalysis application. Sol. Energy Mater. Sol. Cells 134, 400–406 (2015)CrossRefGoogle Scholar
  16. 16.
    Wang, C., Thompson, R.L., Ohodnicki, P., Baltrus, J., Matranga, C.: Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J. Mater. Chem. 21(35), 13452 (2011)CrossRefGoogle Scholar
  17. 17.
    Yuwen, L., Xu, F., Xue, B., Luo, Z., Zhang, Q., Bao, B., Su, S., Weng, L., Huang, W., Wang, L.: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd–MoS2 for methanol oxidation. Nanoscale 6(11), 5762–5769 (2014)CrossRefGoogle Scholar
  18. 18.
    Gogoi, G., Arora, S., Vinothkumar, N., De, M., Qureshi, M.: Quaternary semiconductor Cu2ZnSnS4 loaded with MoS2 as a co-catalyst for enhanced photo-catalytic activity. RSC Adv. 5(51), 40475–40483 (2015)CrossRefGoogle Scholar
  19. 19.
    Wang, D., Astruc, D.: Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 114(14), 6949–6985 (2014)CrossRefGoogle Scholar
  20. 20.
    Shokouhimehr, M.: Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 5(2), 534–560 (2015)CrossRefGoogle Scholar
  21. 21.
    Kaskel, S.: Functional inorganic nanofillers for transparent polymers. VDI Berichte 1940, 57–60 (2006)Google Scholar
  22. 22.
    Xiong, Z., Zhang, L.L., Ma, J., Zhao, X.S.: Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem. Commun. 46(33), 6099 (2010)CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Xiong, Z., Zhao, X.S.: Graphene–metal-oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 21(11), 3634 (2011)CrossRefGoogle Scholar
  24. 24.
    Kumar, S., Reddy, N.L., Kushwaha, H.S., Kumar, A., Shankar, M.V., Bhattacharyya, K., Halder, A., Krishnan, V.: Efficient electron transfer across a ZnO–MoS2–reduced graphene oxide heterojunction for enhanced sunlight-driven photocatalytic hydrogen evolution. ChemSusChem 10(18), 3588–3603 (2017)CrossRefGoogle Scholar
  25. 25.
    Islam, S.E., Hang, D.-R., Chen, C.-H., Sharma, K.H.: Facile and cost-efficient synthesis of quasi-0D/2D ZnO/MoS2 nanocomposites for highly enhanced visible-light-driven photocatalytic degradation of organic pollutants and antibiotics. Chem. Eur. J. 24(37), 9305–9315 (2018)CrossRefGoogle Scholar
  26. 26.
    Tan, Y.H., Yu, K., Li, J.Z., Fu, H., Zhu, Z.Q.: MoS2·ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties. J. Appl. Phys. 116(6), pp (2014)CrossRefGoogle Scholar
  27. 27.
    Zhang, S., Tang, F., Liu, J., Che, W., Su, H., Liu, W., Huang, Y., Jiang, Y., Yao, T., Liu, Q., Wei, S.: MoS2-coated ZnO nanocomposite as an active heterostructure photocatalyst for hydrogen evolution. Radiat. Phys. Chem. 137, 104–107 (2017)CrossRefGoogle Scholar
  28. 28.
    Tian, Q., Wu, W., Yang, S., Liu, J., Yao, W., Ren, F., Jiang, C.: Zinc oxide coating effect for the dye removal and photocatalytic mechanisms of flower-like MoS2 nanoparticles. Nanoscale Res. Lett. 12(1), 221 (2017)CrossRefGoogle Scholar
  29. 29.
    Li, W.-J., Shi, E.-W., Ko, J.-M., Chen, Z., Ogino, H., Fukuda, T.: Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth 250(3–4), 418–422 (2003)CrossRefGoogle Scholar
  30. 30.
    Sun, P., Zhang, W., Hu, X., Yuan, L., Huang, Y.: Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2(10), 3498–3504 (2014)CrossRefGoogle Scholar
  31. 31.
    Lin, H., Chen, X., Li, H., Yang, M., Qi, Y.: Hydrothermal synthesis and characterization of MoS2 nanorods. Mater. Lett. 64(15), 1748–1750 (2010)CrossRefGoogle Scholar
  32. 32.
    Khorsand Zak, A., Razali, R., Abd Majid, W.H., Darroudi, M.: Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 6(1), 1399–1403 (2011)CrossRefGoogle Scholar
  33. 33.
    Brayner, R., Dahoumane, S.A., Yéprémian, C., Djediat, C., Meyer, M., Couté, A., Fiévet, F.: ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26(9), 6522–6528 (2010)CrossRefGoogle Scholar
  34. 34.
    Bindu, P., Thomas, S.: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)CrossRefGoogle Scholar
  35. 35.
    Ramana, C., Becker, U., Shutthanandan, V., Julien, C.: Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics. Geochem. Trans. 9(1), 8 (2008)CrossRefGoogle Scholar
  36. 36.
    Kılıç, B., Gür, e, Tüzemen, s: Nanoporous ZnO photoelectrode for dye-sensitized solar cell. J. Nanomater. 2558(June), 92697 (2009)Google Scholar
  37. 37.
    Min, Y., He, G., Xu, Q., Chen, Y.: Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A 2(8), 2578–2584 (2014)CrossRefGoogle Scholar
  38. 38.
    Molla, A., Sahu, M., Hussain, S.: Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes. Sci. Rep. 6(May), 1–11 (2016)Google Scholar
  39. 39.
    Ahmed, Yunus, Yaakob, Zahira, Akhtar, Parul: Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal. Sci. Technol. 6, 1222–1232 (2016)CrossRefGoogle Scholar
  40. 40.
    Luan, Jingfei, Zhitian, Hu: Synthesis, property characterization, and photocatalytic activity of novel visible light-responsive photocatalyst Fe2BiSbO7. Int. J. Photoenergy 2012, 3019541–30195411 (2012)Google Scholar
  41. 41.
    Pontes, A.J.P.S.D., da Costa, P.R.F., da Silva, D.R., Garcia-Segura, S., Martínez-Huitle, C.A.: Methylene blue decolorization and mineralization by means of electrochemical technology at pre-pilot plant scale: role of the electrode material and oxidants. Int. J. Electrochem. Sci. 11, 4878–4891 (2016)Google Scholar
  42. 42.
    Habibi, Mohammad Hossein, Kamrani, Reza: Photocatalytic mineralization of methylene blue from water by a heterogeneous copper-titania nanocomposite film. Desalin. Water Treat. 46, 278–284 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Physical Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS)Charotar University of Science and Technology (CHARUSAT)ChangaIndia

Personalised recommendations