Electronic Materials Letters

, Volume 13, Issue 2, pp 114–119 | Cite as

A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

  • Halit AltuntasEmail author
  • Turkan Bayrak


In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage (C-V) and current-voltage (I-V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density (N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.


aluminum nitride effective charge density atomic layer deposition (ALD) hollow-cathode plasma inductively coupled RF-plasma dielectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Lee, S. Wu, S. B. Jhong, K. H. Chen, and K. T. Liu, J. Nanomater. 2014, 250439-1 (2014).Google Scholar
  2. 2.
    M. S. Sun, J. C. Zhang, J. Huang, J. F. Wang, and K. Xu, J. Cryst. Growth 436, 62 (2016).CrossRefGoogle Scholar
  3. 3.
    H. V. Bui, F. B. Wiggers, A. Gupta, M. D. Nguyen, A. A. I. Aarnink, M. P. de Jong, and A. Y. Kovalgin, J. Vac. Sci. Technol. A 33, 01A111 (2015).Google Scholar
  4. 4.
    K. H. Chiu, J. H. Chen, H. R. Chen, and R. S. Huang, Thin Solid Films 515, 4819 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Bosund, T. Sajavaara, M. Laitinen, T. Huhtio, M. Putkonen, V. M. Airaksinen, and H. Lipsanen, Appl. Surf. Sci. 257, 7827 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Razeghi and R. A. McClintock, J. Cryst. Growth 311, 3067 (2009).CrossRefGoogle Scholar
  7. 7.
    T. V. Blank and Y. A. Gol’dberg, Semiconductors 37, 1000 (2003).Google Scholar
  8. 8.
    C. R. Ortiz, V. M. Pantojas, and W. O. Rivera, Solid State Electron. 91, 106 (2014).CrossRefGoogle Scholar
  9. 9.
    B. Abdallah, S. Al-Khawaja, A. Alkhawwam, and I. M. Ismail, Thin Solid Films 562, 152 (2014).CrossRefGoogle Scholar
  10. 10.
    B. Abdallah, S. Al-Khawaja, and A. Alkhawwam, Appl. Surf. Sci. 258, 419 (2011).CrossRefGoogle Scholar
  11. 11.
    A. M. Ivanov, I. M. Kotina, M. S. Lasakov, N. B. Strokan, and L. M. Tuhkonen, Semiconductors 44, 1031 (2010).Google Scholar
  12. 12.
    Y. Tanaka, Y. Hasebe, T. Inushima, A. Sandhu, and S. Ohoya, J. Cryst. Growth 209, 410 (2000).CrossRefGoogle Scholar
  13. 13.
    F. Jose, R. Ramaseshan, S. Dash, S. Bera, A. K. Tyagi, and B. Raj, J. Phys. D Appl. Phys. 43, 075304 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Leskela, J. Niinisto, and M. Ritala, Comph. Mater. Process 4, 101 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Ritala, M. Leskelä, E. Nykänen, P. Soininen, and L. Niinistö, Thin Solid Films 225, 288 (1993).CrossRefGoogle Scholar
  16. 16.
    H. Altuntas, C. Ozgit-Akgun, I. Donmez, and N. Biyikli, IEEE Trans. Electron Dev. 62, 3627 (2015).CrossRefGoogle Scholar
  17. 17.
    H. Altuntas, C. Ozgit-Akgun, I. Donmez, and N. Biyikli, J. Appl. Phys. 117, 155101 (2015).CrossRefGoogle Scholar
  18. 18.
    H. C. Barshilia, B. Deepthi, and K. S. Rajam, Thin Solid Films 516, 4168 (2008).CrossRefGoogle Scholar
  19. 19.
    C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, and N. Biyikli, J. Mater. Chems. C, 2, 2123 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. X. Bi, Y. D. Zheng, R. Zhang, S. L. Gu, Q. Xiu, L. L. Zhou, B. Shen, D. J. Chen, and Y. Shi, J. Mater. Sci. Mater. El. 15, 317 (2004).CrossRefGoogle Scholar
  21. 21.
    X. H. Xu, C. J. Zhang, and Z. H. Jin, Thin Solid Films 388, 62 (2001).CrossRefGoogle Scholar
  22. 22.
    F. Engelmark, J. Westlinder, G. F. Iriarte, I. V. Katardjiev, and J. Olsson, IEEE Trans. Electron. Dev. 50, 1214 (2003).CrossRefGoogle Scholar
  23. 23.
    D. Eom, S. Y. No, C. S. Hwang, and H. J. Kim, J. Electrochem. Soc. 153, C229 (2006).CrossRefGoogle Scholar
  24. 24.
    I. C. Oliveira, M. Massi, S. G. Santos, C. Otani, H. S. Maciel, and R. D. Mansano, Diam. Relat. Mater. 10, 1317 (2001).CrossRefGoogle Scholar
  25. 25.
    C. I. Wu and A. Kahn, Appl. Phys. Lett. 74, 546 (1999).CrossRefGoogle Scholar
  26. 26.
    T. Adam, J. Kolodzey, C. P. Swann, M. W. Tsao, and J. F. Rabolt, Appl. Surf. Sci. 175-176, 428 (2001).CrossRefGoogle Scholar
  27. 27.
    Z. R. Song, Y. H. Yu, D. S. Shen, S. C. Zou, Z. H. Zheng, E. Z. Luo, and Z. Xie, Mater. Lett. 57, 4643 (2003).CrossRefGoogle Scholar
  28. 28.
    K. Tsubouchi and N. Mikoshiba, IEEE Trans. Sonics Ultrason. 32, 634 (1985).CrossRefGoogle Scholar
  29. 29.
    E. V. Gerova, N. A. Ivanov, and K. I. Kirov, Thin Solid Films 81, 201 (1981).CrossRefGoogle Scholar
  30. 30.
    A. Fathimulla and A. A. Lakhani, J. Appl. Phys. 54, 4586 (1983).CrossRefGoogle Scholar
  31. 31.
    H. Altuntas, T. Bayrak, S. Kizir, A. Haider, and N. Biyikli, Semic. Sci. Tech. 31, 075003 (2016).CrossRefGoogle Scholar
  32. 32.
    V. Ligatchev, Rusli, and Z. Pan, Appl. Phys. Lett. 87, 242903 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of Science, Department of PhysicsCankiri Karatekin UniversityCankiriTurkey
  2. 2.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  3. 3.Center for Advancing Electronics Dresden (CFAED)Technische Universität DresdenDresdenGermany

Personalised recommendations