Electronic Materials Letters

, Volume 13, Issue 3, pp 222–229 | Cite as

Synthesis of Sr(1-x-y)Al4O7:Eux 2+,Lny 3+ (Ln = Dy, Y, Pr) nanophosphors using rapid gel combustion process and their down conversion characteristics

  • Devender SinghEmail author
  • Vijeta Tanwar
  • Anura Priyajith Samantilleke
  • Bernabe Mari
  • Shri Bhagwan
  • Krishan Chander Singh
  • Pratap Singh Kadyan
  • Ishwar Singh


Eu2+ and Eu2++Ln3+ doped SrAl4O7 nanophosphors were synthesized by rapid gel combustion process. The morphology of prepared phosphors was examined with scanning and transmission electron microscopy. The phase identification and the crystal structures of nanophosphors were studied using X-ray powder diffraction techniques. Luminescence characteristics of the prepared nanophosphors were analyzed on account of excitation, emission and phosphorescence decay analysis. The emission spectra demonstrated the broad green emission attributed to 4f65d1→ 4f7 transition of the Eu2+ ions. The effect of codoping of some trivalent lanthanide (Dy3+, Pr3+ and Y3+) ions were investigated for improving the emission intensity and phosphorescence decay time of the basic lattice of SrAl4O7:Eu2+ phosphors. The synthesized materials had enhanced bright luminescent properties that could suitably be applied for display as well as photovoltaic applications.


luminescence SrAl4O7:Eu2+ trivalent lanthanides codopants nanophosphor XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Zhang, C. Zhao, and D. Chen, J. Bio. Chem. Lumin. 25, 25 (2010).Google Scholar
  2. 2.
    A. Nag and T. R. N. Kutty, J. Alloys Compd. 354, 221 (2003).CrossRefGoogle Scholar
  3. 3.
    S. H. Choi, N. H. Kim, Y. H. Yun, and S. C. Choi, J. Ceram. Process. Res. 7, 62 (2006).Google Scholar
  4. 4.
    B. M. Smets, Mater. Chem. Phys. 16, 283 (1987).CrossRefGoogle Scholar
  5. 5.
    C. R. Ronda, J. Lumin. 72-74, 49 (1997).CrossRefGoogle Scholar
  6. 6.
    V. Chernov, T. M. Piters, R. Melendrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barboza-Flores, Radiat. Meas. 42, 668 (2007).CrossRefGoogle Scholar
  7. 7.
    S. Chawla, N. Kumar, and H. Chander, J. Lumin. 129, 114 (2009).CrossRefGoogle Scholar
  8. 8.
    T. Hatayama, S. Fukumoto, and S. Ibuki, Jpn. J. Appl. Phys. 31, 3383 (1992).CrossRefGoogle Scholar
  9. 9.
    O. A. Lopez, J. McKittrick, and L. E. Shea, J. Lumin. 71, 1 (1997).CrossRefGoogle Scholar
  10. 10.
    H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, and J. H. Jeong, J. Korean Phys. Soc. 52, 116 (2008).CrossRefGoogle Scholar
  11. 11.
    T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, J. Am. Ceram. Soc. 81, 413 (1998).CrossRefGoogle Scholar
  12. 12.
    R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, J. Lumin. 85, 149 (1999).CrossRefGoogle Scholar
  13. 13.
    V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, Opt. Mater. 30, 446 (2007).CrossRefGoogle Scholar
  14. 14.
    X. M. Teng, W. D. Zhuang, and H. Q. He, Rare Metals 27, 335 (2008).CrossRefGoogle Scholar
  15. 15.
    C. Zhao and D. Chen, Mater. Lett. 61, 3673 (2007).CrossRefGoogle Scholar
  16. 16.
    Y. Lin, Z. Tang, Z. Zhang, and C. Nan, J. Eur. Ceram. Soc. 23, 175 (2003).CrossRefGoogle Scholar
  17. 17.
    D. Singh, V. Tanwar, A. P. Simantilleke, B. Mari, P. S. Kadyan, and I. Singh, Adv. Mater. Lett. 7, 47 (2016).CrossRefGoogle Scholar
  18. 18.
    D. Singh, V. Tanwar, A. P. Simantilleke, B. Mari, S. Bhagwan, P. S. Kadyan, and I. Singh, J. Electron. Mater. 45, 2718 (2016).CrossRefGoogle Scholar
  19. 19.
    J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, Appl. Phys. Lett. 77, 2162 (2000).CrossRefGoogle Scholar
  20. 20.
    M. Gu, L. Xiao, X. Liu, R. Zhang, B. Liu, and X. Xu, J. Alloys Compd. 426, 390 (2006).CrossRefGoogle Scholar
  21. 21.
    L. Wanga and Y. Wang, J. Lumin. 122, 921 (2007).CrossRefGoogle Scholar
  22. 22.
    C. Cai, P. Wen, L. Hao, and X. Xu, Mater. Res. Bull. 55, 156 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Unithrattil, K. H. Lee, and W. B. Im, J. Am. Ceram. Soc. 97, 874 (2014).CrossRefGoogle Scholar
  24. 24.
    H. Yamamoto and T. Matsuzawa, J. Lumin. 72-74, 287 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Ekambaram and K. C. Patil, J. Alloys Compd. 248, 7 (1997).CrossRefGoogle Scholar
  26. 26.
    J. Chen, F. Gu, and C. Li, Cry. Growth Des. 8, 3175 (2008).CrossRefGoogle Scholar
  27. 27.
    G. I. Akmehmet, S. Sturm, L. Bocher, M. Kociak, B. Ambrozic, and C. W. O. Yang, J. Am. Ceram. Soc. 99, 2175 (2016).CrossRefGoogle Scholar
  28. 28.
    K. D. Giras, J. Nano-Electron. Phys. 5, 03013 (2013).Google Scholar
  29. 29.
    S. Suri, K. K. Bamzai, and V. Singh, J. Therm. Anal. Calorim. 105, 229 (2011).CrossRefGoogle Scholar
  30. 30.
    S. J. Joshi, B. B. Parekh, K. D. Vohra, and M. J. Joshi, Bull. Mater. Sci. 29, 307 (2006).CrossRefGoogle Scholar
  31. 31.
    I. Quasim, A. Firdous, N. Sahni, S. K. Khosa, and P. N. Kotru, Cryst. Res. Technol. 44, 539 (2009).CrossRefGoogle Scholar
  32. 32.
    S. M. Lee, T. Ito, and H. Murakami, Proc. Annual Autumn Conference on the Korea Institute of Electrical and Electronic Material Engineers, p. 705, Seoul, Republic of Korea (2003).Google Scholar
  33. 33.
    W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, Solid State Commun. 133, 197 (2005).CrossRefGoogle Scholar
  34. 34.
    J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, Mater. Res. Bull. 47, 247 (2012).CrossRefGoogle Scholar
  35. 35.
    P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, Cryst. Res. Technol. 40, 410 (2005).CrossRefGoogle Scholar
  36. 36.
    D. Singh, V. Tanwar, A. P. Simantilleke, B. Mari, P. S. Kadyan, and I. Singh, J. Mater. Sci. Mater. Electron. 27, 2260 (2016).CrossRefGoogle Scholar
  37. 37.
    T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, UK (1958).Google Scholar
  38. 38.
    C. Zhu, Y. Yang, X. Liang, S. Yuan, and G. Chen, J. Am. Ceram. Soc. 90, 2984 (2007).CrossRefGoogle Scholar
  39. 39.
    F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, Chem. Mater. 7, 3904 (2005).CrossRefGoogle Scholar
  40. 40.
    Q. Zeng, Z. Pei, and Q. Su, J. Alloys Compd. 275, 238 (1998).CrossRefGoogle Scholar
  41. 41.
    H. Zeng, Y. Yang, Z. Lin, X. Liang, S. Yuan, G. Chen, and L. Sun, J. Non-Cryst. Solids 357, 2328 (2011).CrossRefGoogle Scholar
  42. 42.
    B. Liu, Y. Wang, J. Zhou, F. Zhang, and Z. Wang, J. Appl. Phys. 106, 053102-1 (2009).Google Scholar
  43. 43.
    I. C. Chen and T. M. Chen, J. Mater. Res. 16, 644 (2001).CrossRefGoogle Scholar
  44. 44.
    A. Jain, A. Kumar, S. J. Dhoble, and D. R. Peshwe, Renew. Sustainable Energy Rev. 65, 135 (2016).CrossRefGoogle Scholar
  45. 45.
    Y. Li, M. Gecevicius, and J. Qiu, Chem. Soc. Rev. 45, 2090 (2016).CrossRefGoogle Scholar
  46. 46.
    Y. L. Chang, H. I. Hsiang, and M. T. Liang, J. Alloys Compd. 461, 598 (2008).CrossRefGoogle Scholar
  47. 47.
    F. M Emen, N. Külcü, and A. N. Yazici, Eur. J. Chem. 1, 28 (2010).CrossRefGoogle Scholar
  48. 48.
    J. S. Bae, J. H. Jeong, S. S. Yi, and J. C. Park, Appl. Phys. Lett. 82, 3629 (2003).CrossRefGoogle Scholar
  49. 49.
    P. Dorenbos, Phys. Status Solidi 242, R7 (2005).CrossRefGoogle Scholar
  50. 50.
    J. Zhang, J. Lin, J. Wu, S. Zhang, P. Zhou, X. Chen, and R. Xu, J. Mater. Sci. Mater. Electron. 27, 1350 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Devender Singh
    • 1
    • 2
    Email author
  • Vijeta Tanwar
    • 1
  • Anura Priyajith Samantilleke
    • 2
  • Bernabe Mari
    • 3
  • Shri Bhagwan
    • 1
  • Krishan Chander Singh
    • 1
  • Pratap Singh Kadyan
    • 1
  • Ishwar Singh
    • 1
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Centro de FisicaUniversidade of MinhoBragaPortugal
  3. 3.Departament de Física AplicadaUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations