Electronic Materials Letters

, Volume 13, Issue 3, pp 260–269 | Cite as

Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors

  • Gun-Joo Sun
  • Jae Kyung Lee
  • Wan In Lee
  • Ram Prakash Dwivedi
  • Chongmu LeeEmail author
  • Taegyung KoEmail author


NiO-decorated SnO2 nanorods were synthesized by the thermal evaporation of Sn powders followed by the solvothermal deposition of NiO. A multi-networked p-n heterostructured nanorod sensor was fabricated by dropping the p-NiO-decorated n-SnO2 nanorods onto the interdigited electrode pattern and then annealing. The multi-networked p-n heterostructured nanorod sensor exhibited enhanced response to ethanol compared with the pristine SnO2 nanorod and NiO nanoparticle sensors. The former also exhibited a shorter sensing time for ethanol. Both sensors exhibited selectivity for ethanol over other volatile organic compounds (VOCs) such as HCHO, methanol, benzene and toluene and the decorated sensor exhibited superior selectivity to the other two sensors. In addition, the dominant sensing mechanism is discussed in detail by comparing the sensing properties and current-voltage characteristics of a p-NiO/n-SnO2 heterostructured nanorod sensor with those of a pristine SnO2 nanorod sensor and a pristine NiO nanoparticle sensor. Of the two competing electronic mechanisms: a potential barrier-controlled carrier transport mechanism at a NiO-SnO2 p-n junction and a surface-depletion-controlled carrier transport mechanism, the former has some contribution to the enhanced gas sensing performance of the p-n heterostructured nanorod sensor, however, its contribution is not as significant as that of the latter.


p-n junction heterostructure gas sensor ethanol sensing mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Park, G.-J. Sun, S. Kim, S. Lee, and C. Lee, Electron. Mater. Lett. 11, 572 (2015).CrossRefGoogle Scholar
  2. 2.
    S. Park, G.-J. Sun, S. Kim, S. B. Choi, S. Lee, and C. Lee, Electron. Mater. Lett. 11, 896 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Li, T. Lv, F.-X. Zhao, X.-X. Lian, Y.-L. Zou, and Q. Wang, Electron. Mater. Lett. 12, 411 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, and B. Cao, Sensor. Actuat. B-Chem. 199, 339 (2014).CrossRefGoogle Scholar
  5. 5.
    H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, Sensor. Actuat. B-Chem. 161, 594 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Kolmakov, D. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano Lett. 5, 667 (2005).CrossRefGoogle Scholar
  7. 7.
    Q. Kuang, C. Lao, Z. Li, and Y. J. Liu, Phys. Chem. B 112, 11539 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Park, S. Park, J. Jung, T. Hong, S. Lee, H. W. Kim, and C. Lee, Ceram. Int. 40, 11051 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, Sensor. Actuat. B-Chem. 200, 288 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Sensor. Actuat. B-Chem. 49, 121 (1998).CrossRefGoogle Scholar
  11. 11.
    C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, and H. Zhang, Sensor. Actuat. B-Chem. 156, 114 (2011).CrossRefGoogle Scholar
  12. 12.
    S.-W. Fan, A. K. Srivastava, and V. P. Dravid, Appl. Phys. Lett. 95, 142106 (2009).CrossRefGoogle Scholar
  13. 13.
    J. M. Lim, K. C. Shin, H. W. Kim, and C. Lee, Thin Solid Films 475, 256 (2005).CrossRefGoogle Scholar
  14. 14.
    H.-J. Kim and J.-H. Lee, Sensor. Actuat. B-Chem. 192, 607 (2014).CrossRefGoogle Scholar
  15. 15.
    N. Barsan and U. Weimer, J. Electroceram. 7, 143 (2001).CrossRefGoogle Scholar
  16. 16.
    O. V. Safonova, G. Delabouglise, B. Chenevier, A. M. Gaskov, and M. Labeau, Mater. Sci. Eng. C 21, 105 (2002).CrossRefGoogle Scholar
  17. 17.
    S. Xu, J. Gao, L. Wang, K. Kan, Y. Xie, P. Shen, L. Li, and K. Shi, Nanoscale 7, 14643 (2015).CrossRefGoogle Scholar
  18. 18.
    D. R. Miller, S. A. Akbar, and P. A. Morris, Sens. Actuators B 204, 250 (2014).CrossRefGoogle Scholar
  19. 19.
    N. V. Hieu, H.-R. Kim, B.-K. Ju, and J.-H. Lee, Sensor. Actuat. B-Chem. 133, 228 (2008).CrossRefGoogle Scholar
  20. 20.
    S. Shi, Y. Liu, Y. Chen, J. Zhang, Y. Wang, and T. Wang, Sensor. Actuat. B-Chem. 140, 426 (2009).CrossRefGoogle Scholar
  21. 21.
    K. Ihokura, and J. Watson, The Stannic Oxide Gas Sensor—Principles and Applications, CRC Press, Boca Raton, USA (1994).Google Scholar
  22. 22.
    J. M. Lim, K. C. Shin, H. W. Kim, and C. Lee, Thin Solid Films 475, 256 (2005).CrossRefGoogle Scholar
  23. 23.
    H. Kumagai, M. Matsumoto, K. Toyoda, and M. Obara, J. Mater. Sci. Lett. 15, 1081 (1996).CrossRefGoogle Scholar
  24. 24.
    T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, and N. Yamazoe, J. Mol. Catal. A: Chem. 155, 193 (2000).CrossRefGoogle Scholar
  25. 25.
    V. Kovalenko, A. Zhukova, M. Rumyantseva, A. Gaskov, V. Yushchenko, I. Ivanova, and T. Pagnier, Sensor. Actuat. B-Chem. 126, 52 (2007).CrossRefGoogle Scholar
  26. 26.
    N. Hosseinpour, A. A. Khodadadi, A. Bahramian, and Y. Mortazavi, Langmuir 29, 14135 (2013).CrossRefGoogle Scholar
  27. 27.
    Z. I. Dai, C.-S. Lee, B.-Y. Kim, C.-H. Kwak, J.-W. Yoon, H.-M. Jeong, and J.-H. Lee, ACS Appl. Mater. Inter. 6, 16217 (2014).CrossRefGoogle Scholar
  28. 28.
    S. An, S. Park, H. Ko, and C. Lee, Appl. Phys. A 108, 53 (2012).CrossRefGoogle Scholar
  29. 29.
    A. Mirzaei, S. Park, G.-J. Sun, H. Kheel, and C. Lee, J. Hazard. Mater. 305, 130 (2016).CrossRefGoogle Scholar
  30. 30.
    J. Parrondo, R. Santhanam, F. Mijangos, and B. Rambabu, Int. J. Electrochem. Sci. 5, 1342 (2010).Google Scholar
  31. 31.
    K.-I. Choi, H.-R. Kim, K.-M. Kim, D. Liu, G. Cao, and J.-H. Lee, Sensor. Actuat. B-Chem. 146, 183 (2010).CrossRefGoogle Scholar
  32. 32.
    Y. Li, J. Xu, J. Chao, D. Chen, S. Ouyang, J. Ye, and G. Shen, J. Mater. Chem. 21, 12852 (2011).CrossRefGoogle Scholar
  33. 33.
    Z. Wen and L. Tianmo, Physic. B 405, 1345 (2010).CrossRefGoogle Scholar
  34. 34.
    S. Park, S. Kim, G.-J. Sun, and C. Lee, ACS Appl. Mater. Inter. 7, 8138 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Wang, Y. Su, J. Xu, C. Ye, and F. Deng, Phys. Chem. Chem. Phys. 8, 2378 (2006).CrossRefGoogle Scholar
  36. 36.
    K. Tanabe and T. Yamaguchi, J. Res. Inst. Catal. Hokkaido University 11, 179 (1964).Google Scholar
  37. 37.
    H. Sachdeva, D. Dwivedi, R. R. Bhattacharjee, S. Khaturia, and R. Saroj, J. Chem. 2013, 606259 (2013).CrossRefGoogle Scholar
  38. 38.
    S. Park, S. An, Y. Mun, and C. Lee, ACS Appl. Mater. Inter. 5, 4285 (2013).CrossRefGoogle Scholar
  39. 39.
    X. Tong, Y. Qin, X. Guo, O. Moutanabbir, X. Ao, E. Pippel, L. Zhang, and M. Knez, Small 8, 3390 (2012).CrossRefGoogle Scholar
  40. 40.
    V. Múčka and J. Cabicar, Czech. Chem. Commun. 40, 236 (1975).CrossRefGoogle Scholar
  41. 41.
    C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, and C. C. Liu, Sensor. Actuat. B-Chem. 134, 360 (2008).CrossRefGoogle Scholar
  42. 42.
    F. Qu, J. Liu, Y. Wang, S. Wen, Y. Chen, X. Li, and S. Ruan, Sensor. Actuat. B-Chem. 199, 346 (2014).CrossRefGoogle Scholar
  43. 43.
    H. Zhang, J. Feng, T. Fei, S. Liu, and T. Zhang, Sensor. Actuat. B-Chem. 190, 472 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonKorea
  2. 2.Department of ChemistryInha UniversityIncheonKorea
  3. 3.School of Electrical and Computer Science EngineeringShoolini UniversitySolanIndia

Personalised recommendations