Electronic Materials Letters

, Volume 12, Issue 6, pp 779–783 | Cite as

Influence of molecular weight on the dielectric and energy storage properties of poly(vinylidene fluoride)

  • Yuetao Zhao
  • Wenyao Yang
  • Yujiu Zhou
  • Yan Chen
  • Yajie Yang
  • Jianhua XuEmail author
  • Yadong JiangEmail author


The molecular weight shows great influence on dielectric and energy storage performance of poly(vinylidene fluoride) (PVDF) films and related devices. In this letter, the influences of molecular weight on the dielectric and energy storage properties of PVDF films were studied. It has been found that, under a 1000 kV/cm electric field, the low-molecular-weight PVDF film presents a much higher energy storage efficiency as high as 80.10%, nearly three times as much as the high-molecular-weight PVDF film. Moreover, the low-molecular-weight PVDF film also shows high resistivity, representing an order of magnitude improvement over the high-molecular-weight PVDF film, which is more desirable and promising for high performance pulse discharge capacitor application.


molecular weight poly(vinylidene fluoride) relative dielectric constant energy storage efficiency resistivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13391_2016_6200_MOESM1_ESM.pdf (357 kb)
Influence of molecular weight on the dielectric and energy storage properties of poly(vinylidene fluoride)


  1. 1.
    W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, and Z. Xu, Appl. Phys. Lett. 96, 192905 (2010).CrossRefGoogle Scholar
  2. 2.
    B. J. Chu, X. Zhou, K. L. Ren, B. Neese, M. R. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science 313, 334 (2006).CrossRefGoogle Scholar
  3. 3.
    Z. Zhang, Q. Meng, and T. C. M. Chung, Polymer 50, 707 (2009).CrossRefGoogle Scholar
  4. 4.
    W. Xia, Z. Xu, F. Wen, W. Li, and Z. Zhang, Appl. Phys. Lett. 97, 222905 (2010).CrossRefGoogle Scholar
  5. 5.
    B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Rahimabady, S. Chen, K. Yao, F. E. H. Tay, and L. Lu, Appl. Phys. Lett. 99, 142901 (2011).CrossRefGoogle Scholar
  7. 7.
    M. H. M. Wahid, R. M. Dahan, S. Z. Sa’ad, A. N. Arshad, M. N. Sarip, M. R. Mahmood, G. W. Chen, and A. M. W. Haliza, Adv. Mat. Res. 812, 60 (2013).Google Scholar
  8. 8.
    Q. M. Zhang, V. Bharti, and X. Zhao, Science 280, 2101 (1998).CrossRefGoogle Scholar
  9. 9.
    J. Li, H. Gong, Q. Yang, Y. Xie, L. Yang, and Z. Zhang, Appl. Phys. Lett. 104, 263901 (2014).CrossRefGoogle Scholar
  10. 10.
    H. Tai, W. Wang, R. Martin, J. Liu, E. Lester, P. Licence, H. M. Woods, and S. M. Howdle, Macromolecules 38, 355 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Zhao, W. Yang, Y. Zhou, Y. Chen, X. Cao, Y. Yang, J. Xu, and Y. Jiang, J. Mater. Sci.: Mater. Electron. 27, 7280 (2016).Google Scholar
  12. 12.
    M. Benz and W. B. Euler, J. Appl. Polym. Sci. 89, 1093 (2003).CrossRefGoogle Scholar
  13. 13.
    C. Zhao, M. Guo, Y. Lu, and Q. Wang, Macromol. Symp. 279, 52 (2009).CrossRefGoogle Scholar
  14. 14.
    R. Gregorio and E. M. Ueno, J. Mater. Sci. 34, 4489 (1999).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of Electronic and Electrical Engineering, Engineering Research Center of Electronic Information Technology and ApplicationChongqing University of Arts and SciencesChongqingChina

Personalised recommendations