Electronic Materials Letters

, Volume 11, Issue 3, pp 466–480

Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co)

  • Muhammad Bilal
  • Iftikhar Ahmad
  • Saeid Jalali Asadabadi
  • Rashid Ahmad
  • Muhammad Maqbool
Original Article

Abstract

In this paper we communicate the thermoelectric properties of carbon and nitrogen based metallic antiperovskites ANCa3 (A=Ge, Sn, Pb), BCFe3 (B=Al, Zn, Ga) and SnCD3 (D=Co and Fe) using the ab-initio calculations to explore efficient metallic thermoelectric materials. The consistency of the calculated results of SnCCo3 and SnCFe3 with the experimental results confirms the reliability of our theoretical calculations for the other investigated metallic antiperovskites. The results indicate that the thermopower of these materials can be enhanced by changing the chemical potential. The dimensionless figure of merit for the three nitrides approaches 0.96 at room temperature, which proves the usefulness of these materials in thermoelectric generators. Furthermore, the thermal conductivity is minimum at room temperature for chemical potential values between -0.25 μ(eV) and 0.25 μ(eV), and provides the maximum values of dimensionless figure of merit in this range. The striking feature of these studies is identifying a metallic compound, SnNCa3, with the highest value of Seebeck coefficient at room temperature out of all metals. The results anticipate that these materials could be efficient in thermoelectric generators; however, this needs experimental verification.

Keywords

thermoelectric properties metallic antiperovskites electrical conductivity ab-initio calculations spin orbit coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Ovsyannikov and V. V. Shchennikov, Chem. Mater. 22, 635 (2010).CrossRefGoogle Scholar
  2. 2.
    L. E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  3. 3.
    X. Qu, W. Wang, W. Liu, Z. Yang, X. Duan, and D. Jia, Mater. Chem. Phys. 129, 331 (2011).CrossRefGoogle Scholar
  4. 4.
    O. Rabin, Y. M. Lin, and M. S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).CrossRefGoogle Scholar
  5. 5.
    T. Takeuchi, Mater. Trans. 50, 2359 (2009).CrossRefGoogle Scholar
  6. 6.
    K. Uemura and I. Nishida, Thermoelectric Semiconductor, Their Applications, p. 1, Nikkan Kogyo Shinbun Press, Tokyo, Japan (1988).Google Scholar
  7. 7.
    A. L. Ivanovskii, Russ. Chem. Rev. 64, 499 (1995).Google Scholar
  8. 8.
    A. Bouhemadou, R. Khenata, M. Chegaar, and S. Maabed, Phys. Lett. A 371, 337 (2007).CrossRefGoogle Scholar
  9. 9.
    V. Kanchana and S. Ram, Intermetallics 23, 39 (2012).CrossRefGoogle Scholar
  10. 10.
    H. A. R. Aliabad, M. Ghazanfari, I. Ahmad, and M. A. Saeed, Comput. Mater. Sci. 65, 509 (2012).CrossRefGoogle Scholar
  11. 11.
    N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. Metiu, J. Chem. Phys. 115, 8060 (2001).CrossRefGoogle Scholar
  12. 12.
    H. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).CrossRefGoogle Scholar
  13. 13.
    T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002).CrossRefGoogle Scholar
  14. 14.
    I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 3627 (2001).CrossRefGoogle Scholar
  15. 15.
    W. Shin, N. Murayama, K. Ikeda, and S. Sago, J. Power Sources 103, 80 (2001).CrossRefGoogle Scholar
  16. 16.
    I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).Google Scholar
  17. 17.
    A. Maignan, L. B. Wang, S. Hebert, D. Pelloquin, and B. Raveau, Chem. Mater. 14, 1231 (2002).CrossRefGoogle Scholar
  18. 18.
    T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, Nature 411, 54 (2001).CrossRefGoogle Scholar
  19. 19.
    B. S. Wang, P. Tong, Y. P. Sun, X. B. Zhu, Z. R. Yang, W. H. Song, and J. M. Dai, Appl. Phys. Lett. 97, 042508 (2010).CrossRefGoogle Scholar
  20. 20.
    K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, and T. Kanomata, Phys. Rev. B 63, 024426 (2000).CrossRefGoogle Scholar
  21. 21.
    Y. B. Li, W. F. Li, W. J. Feng, Y. Q. Zhang, and Z. D. Zhang, Phys. Rev. B 72, 024411 (2005).CrossRefGoogle Scholar
  22. 22.
    B. S. Wang, P. Tong, Y. P. Sun, L. J. Li, W. Tang, W. J. Lu, X. B. Zhu, Z. R. Yang, and W. H. Song, Appl. Phys. Lett. 95, 222509 (2009).CrossRefGoogle Scholar
  23. 23.
    B. S. Wang, J. C. Lin, P. Tong, L. Zhang, W. J. Lu, X. B. Zhu, Z. R. Yang, W. H. Song, J. M. Dai, and Y. P. Sun, J. Appl. Phys. 108, 093925 (2010).CrossRefGoogle Scholar
  24. 24.
    K. Takenaka, K. Asano, M. Misawa, and H. Takagi, Appl. Phys. Lett. 92, 011927 (2008).CrossRefGoogle Scholar
  25. 25.
    R. J. Huang, L. F. Li, F. S. Cai, X. D. Xu, and L. H. Qian, Appl. Phys. Lett. 93, 081902 (2008).CrossRefGoogle Scholar
  26. 26.
    K. Asano, K. Koyama, and K. Takenaka, Appl. Phys. Lett. 92, 161909 (2008).CrossRefGoogle Scholar
  27. 27.
    E. O. Chi, W. S. Kim, and N. H. Hur, Solid State Commun. 120, 307 (2001).CrossRefGoogle Scholar
  28. 28.
    K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe, and C. Urano, Appl. Phys. Lett. 98, 022103 (2011).CrossRefGoogle Scholar
  29. 29.
    S. Lin, B. S. Wang, J. C. Lin, Y. N. Huang, W. J. Lu, B. C. Zhao, P. Tong, W.H. Song, and Y. P. Sun, Appl. Phys. Lett. 101, 011908 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Bilal, I. Ahmad, H. A. Rahnamaye-Aliabad, and S. Jalali-Asadabadi, Comput. Mater. Sci. 85, 310 (2014).CrossRefGoogle Scholar
  31. 31.
    S. Lin, B. S. Wang, J. C. Lin, Y. N. Huang, X. B. Hu, B. C. Zhao, W. J. Lu, P. Tong, W. H. Song, and Y. P. Sun, J. Appl. Phys. 110, 083914 (2011).CrossRefGoogle Scholar
  32. 32.
    T. Maruoka and R. O. Suzuki, Mater. Trans. 47, 1422 (2006).CrossRefGoogle Scholar
  33. 33.
    P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, Phys. Rev. B 73, 245106 (2006).CrossRefGoogle Scholar
  34. 34.
    S. Lin, P. Tong, B. S. Wang, Y. N. Huang, D. F. Shao, W. J. Lu, and Y. P. Sun, J. Solid State Chem. 209, 127 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Bilal, B. Khan, H. A. Rahnamaye-Aliabad, M. Maqbool, S. Jalali-Asadabadi, and I. Ahmad, Comput. Phys. Commun. 185, 1394 (2014).CrossRefGoogle Scholar
  36. 36.
    S. Lin, P. Tong, B. Wang, J. Lin, Y. Huang, and Y. Sun, Inorg. Chem. 53, 3709 (2014).CrossRefGoogle Scholar
  37. 37.
    G. D. Mahan, In Solid State Phys. Ed.; F. Seitz, H. Ehrenreich, and F. Spaepen, p. 51, Academic Press, New York, USA (1997).Google Scholar
  38. 38.
    T. M. Tritt and M. A. Subramanian, MRS. Bull. 31, 188 (2006).CrossRefGoogle Scholar
  39. 39.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  40. 40.
    W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
  41. 41.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Technical University of Vienna, Vienna, Austria (2001).Google Scholar
  42. 42.
    F. Grandjean and A. Gerard, J. Phys. F: Metal Phys. 6, 451 (1976).CrossRefGoogle Scholar
  43. 43.
    M. Y. Chern, D. A. Vennos, and F. DiSalvo, J. Solid State Chem. 96, 415 (1992).CrossRefGoogle Scholar
  44. 44.
    J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  45. 45.
    G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  46. 46.
    J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, Scientific Reports 4, 5450 (2014).Google Scholar
  47. 47.
    T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefGoogle Scholar
  48. 48.
    B. Xu, J. Liang, X. Li, J. F. Sun, and L. Yi, Eur. Phys. J. B 79, 275 (2011).CrossRefGoogle Scholar
  49. 49.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
  50. 50.
    S. N. Rashkeev and W. R. L. Lambrecht, Phys. Rev. B 63, 165212 (2001).CrossRefGoogle Scholar
  51. 51.
    T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications, p. 75, Kluwer Academic/PLENUM publishers, New York, USA (2004).CrossRefGoogle Scholar
  52. 52.
    C. Kittel, Introduction to Solid State Physics Eighth Edition, p. 156, John Wiley & Sons, Hoboken, USA (2004).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Muhammad Bilal
    • 1
    • 2
  • Iftikhar Ahmad
    • 1
    • 2
  • Saeid Jalali Asadabadi
    • 3
  • Rashid Ahmad
    • 4
  • Muhammad Maqbool
    • 5
  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdaraPakistan
  2. 2.Department of PhysicsUniversity of MalakandChakdaraPakistan
  3. 3.Department of Physics, Faculty of ScienceUniversity of Isfahan (UI)IsfahanIran
  4. 4.Department of ChemistryUniversity of MalakandChakdaraPakistan
  5. 5.Department of Physics and AstronomyBall State UniversityMuncieUSA

Personalised recommendations