Advertisement

Electronic Materials Letters

, Volume 11, Issue 3, pp 440–446 | Cite as

Au/NiFe magnetoplasmonics: Large enhancement of magneto-optical kerr effect for magnetic field sensors and memories

  • Mehrdad Moradi
  • Seyed Majid MohseniEmail author
  • Saman Mahmoodi
  • Davood Rezvani
  • Narges Ansari
  • Sunjae Chung
  • Johan Åkerman
Original Article

Abstract

Surface plasmon polariton resonance (SPPR) can be originated from the surface charge oscillation via light localization at the interface of a metal, for example, Au or Ag and a dielectric. Such localization can be implemented to increase the magneto-optical (MO) activity of a magnetic medium while SPPR is fulfilled, which is known as magnetoplasmonics. In this paper, a magnetoplasmonic bilayer of Au/ NiFe (Py) sputter deposited on glass is demonstrated. Large enhancement in MO-Kerr effect (MOKE) response due to SPPR effect is observed at different light incident angles. By measuring and analyzing the MO signals from the sample with different thicknesses of Au and Py layers, the optimal thicknesses’ range is obtained with the largest MOKE. The large MOKE intensity from ultra-soft magnetic Py layer with low coercivity and small saturation field suggests a weak magnetic fieldsensitive MO-based element. Finally, different applications of such structures, for example, weak magnetic field sensors and magnetic multilevel memory elements are demonstrated.

Keywords

surface plasmon resonance magnetoplasmonics Kerr effect magneto-optics sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Agranovich and D. L. Mills (Eds.), Surface Polaritons, North-Holland, Amsterdam (1982).Google Scholar
  2. 2.
    K. Welford, Opt. Quant. Electron. 23, 1 (1991).Google Scholar
  3. 3.
    C. Wang, H.-P. Ho, and P. Shum, Opt. Commun. 291, 470 (2013).Google Scholar
  4. 4.
    R. L. Rich and D. G. Myszka, Curr. Opin. Biotech. 11, 54 (2000).Google Scholar
  5. 5.
    L. Wang, Y. Sun, J. Wang, J. Wang, A. Yu, H. Zhang, and D. Song, Colloid. Surface B 84, 484 (2011).Google Scholar
  6. 6.
    D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, J. Appl. Phys. 108, 054502 (2010).Google Scholar
  7. 7.
    M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Cebollada, A. Garcia-Martin, G. Giancane, L. Valli, and R. Rella, Sensor. Actuat. B Chem. 182, 232 (2013).Google Scholar
  8. 8.
    M. G. Manera, E. Ferreiro-Vila, A. Cebollada, J. M. Garcia-Martin, A. Garcia-Martin, G. Giancane, L. Valli, and R. Rella, J. Phys. Chem. C 116, 10734 (2012).Google Scholar
  9. 9.
    J. Vlcek, M. Lesnak, J. Pistora, and O. Zivotsky, Opt. Commun. 286, 372 (2013).Google Scholar
  10. 10.
    D. Regatos, B. Sepulveda, D. Farina, L. G. Carrascosa, and L. M. Lechuga, Opt. Express 19, 8336 (2011).Google Scholar
  11. 11.
    A. Akbari, R. N. Tait, and P. Berini, Opt. Express 18, 8505 (2010).Google Scholar
  12. 12.
    S. A. Meyer, E. C. L. Ru, and P. G. Etchegoin, Anal. Chem. 83, 2337 (2011).Google Scholar
  13. 13.
    N. Bonod, R. Reinisch, E. Popov, and M. Neviere, J. Opt. Soc. Am. B 21, 791 (2004).Google Scholar
  14. 14.
    Y. Demidenko, D. Makarov, O. Schmidt, and V. Lozovski, J. Opt. Soc. Am. B 28, 2115 (2011).Google Scholar
  15. 15.
    E. F. Vila, X. M. B. Sueiro, J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. C. Navarro, G. A. Reig, D. M. Rodriguez, and E. M. Sandoval, IEEE Trans. Magn. 44, 3303 (2008).Google Scholar
  16. 16.
    M. Ghanaatshoar, M. Moradi, and P. Tohidi, Eur. Phys. J.-Appl. Phys. 68, 10402 (2014).Google Scholar
  17. 17.
    M. Ghanaatshoar, M. Moradi, M. M. Tehranchi, and S. M. Hamidi, J. Non-Cryst. Solids 354, 5266 (2008).Google Scholar
  18. 18.
    M. Moradi and M. Ghanaatshoar, Eur. Phys. J.-Appl. Phys. 61, 10603 (2013).Google Scholar
  19. 19.
    M. Moradi, H. Alisafaee, and M. Ghanaatshoar, Physica B 405, 4488 (2010).Google Scholar
  20. 20.
    N. Ansari, S. I. Khartsev, and A. M. Grishin, Opt. Lett. 37, 3552 (2012).Google Scholar
  21. 21.
    N. Ansari and M. M. Tehranchi, Acta Phys. Pol. A 115, 378 (2009).Google Scholar
  22. 22.
    N. Ansari and M. M. Tehranchi, Appl. Phys. B 99, 191 (2010).Google Scholar
  23. 23.
    D. C. Tsui, Phys. Rev. Lett. 22, 293 (1969).Google Scholar
  24. 24.
    H. Feil and C. Haas, Phys. Rev. Lett. 58, 65 (1978).Google Scholar
  25. 25.
    C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, Opt. Express 18, 7743 (2010).Google Scholar
  26. 26.
    V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Nat. Photonics 4, 107 (2010).Google Scholar
  27. 27.
    J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, Phys. Rev. B 76, 153402 (2007).Google Scholar
  28. 28.
    Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, J. Opt. Soc. Am. B 30, 2053 (2013).Google Scholar
  29. 29.
    E. Ferreiro-Vila, M. Iglesias, E. Paz, F. J. Palomares, F. Cebollada, J. M. Gonzalez, G. Armelles, J. M. Garcia-Martin, and A. Cebollada, Phys. Rev. B 83, 205120 (2011).Google Scholar
  30. 30.
    S. M. Hamidi and M. A. Oskuei, J. Supercond. Nov. Magn. 27, 1469 (2014).Google Scholar
  31. 31.
    J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-Gonzalez, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogues, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, Small 7, 2341 (2011).CrossRefGoogle Scholar
  32. 32.
    K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, E. Zubritskaya, J. Åkerman, P. Vavassori, and A. Dmitriev, Nano Lett. 14, 7207 (2014).Google Scholar
  33. 33.
    E. Kretschmann, Z.Phys. 241, 313 (1971).Google Scholar
  34. 34.
    S. Visnovsky, R. Lopusnik, M. Bauer, J. Bok, J. Fassbender, and B. Hillebrands, Opt. Express 9, 12 (2001).Google Scholar
  35. 35.
    E. D. Palik, Handbook of Optical Constants of Solids, Academic press, New York (1998).Google Scholar
  36. 36.
    M. Moradi and M. Ghanaatshoar, Opt. Commun. 283, 5053 (2010).Google Scholar
  37. 37.
    S. Chung, S. M. Mohseni, V. Fallahi, T. N. Anh Nguyen, N. Benatmane, R. K. Dumas, and J. Åkerman, J. Phys. D: Appl. Phys. 46, 125004 (2013).Google Scholar
  38. 38.
    T. N. Anh Nguyen, R. Knut, V. Fallahi, S. Chung, S. M. Mohseni, Q. Tuan Le, O. Karis, S. Peredkov, R. K. Dumas, C. W. Miller, and J. Åkerman, Phys. Rev. Appl. 2, 044014 (2014).Google Scholar
  39. 39.
    L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, New York (2006).CrossRefGoogle Scholar
  40. 40.
    M. Ghanaatshoar and M. Moradi, Opt. Eng. 50, 093801 (2011).Google Scholar
  41. 41.
    E. Chatterjee, T. Marr, P. Dhagat, and V. T. Remcho, Sensor. Actuat. B Chem. 156, 651 (2011).Google Scholar
  42. 42.
    B. Sepulveda, A. Calle, L. M. Lechuga, and G. Armelles, Opt. Lett. 31, 1085 (2006).Google Scholar
  43. 43.
    N. Amos, J. Butler, B. Lee, M. H. Shachar, B. Hu, Y. Tian, J. Hong, D. Garcia, R. M. Ikkawi, R. C. Haddon, D. Litvinov, and S. Khizroev, PLoS One 7, e40134 (2012).Google Scholar
  44. 44.
    Y. Fang, R. K. Dumas, T. N. Anh Nguyen, S. M. Mohseni, S. Chung, and J. Akerman, Adv. Funct. Mater. 23, 1919 (2013).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mehrdad Moradi
    • 1
  • Seyed Majid Mohseni
    • 2
    Email author
  • Saman Mahmoodi
    • 1
  • Davood Rezvani
    • 1
  • Narges Ansari
    • 3
  • Sunjae Chung
    • 4
  • Johan Åkerman
    • 4
    • 5
  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of PhysicsShahid Beheshti University, G. C., EvinTehranIran
  3. 3.Department of PhysicsAlzahra UniversityTehranIran
  4. 4.Material PhysicsRoyal Institute of Technology (KTH)KistaSweden
  5. 5.Department of PhysicsUniversity of GothenburgGothenburgSweden

Personalised recommendations