Electronic Materials Letters

, Volume 11, Issue 6, pp 944–948 | Cite as

Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method

  • T. D. Dongale
  • S. V. Mohite
  • A. A. Bagade
  • P. K. Gaikwad
  • P. S. Patil
  • R. K. Kamat
  • K. Y. Rajpure
Article

Abstract

The unique nonlinear relationship between charge and magnetic flux along with the pinched hysteresis loop in I-V plane provide memory with resistance combinations of attribute to Memristor which lead to their novel applications in non volatile memory, nonlinear dynamics, analog computations and neuromorphic biological systems etc. The present paper reports development of Ag/WO3/ITO thin film memristor device using spray pyrolysis method. The structural, morphological and electrical properties of the thin film memristor device are further characterized using x-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and semiconductor device analyzer. The memristor is simulated using linear dopent drift model to ascertain the theoretical and experimental conformations. For the simulation purpose, the width of doped region (w) limited to the interval [0, D] is considered as a state variable along with the window function characterized by the equation f (x) = w (1 − w). The reported memristor device exhibits the symmetric pinched hysteresis loop in I-V plane within the low operating voltage (±1 V).

Keywords

memristor spray pyrolysis thin films fourth element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. O. Chua, IEEE Trans. Circuit. Theory 18, 507 (1971).CrossRefGoogle Scholar
  2. 2.
    D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).CrossRefGoogle Scholar
  3. 3.
    K. H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, Nano Lett. 12, 389 (2011).CrossRefGoogle Scholar
  4. 4.
    J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotechnol. 3, 429 (2008).CrossRefGoogle Scholar
  5. 5.
    B. Muthuswamy, Int. J. Bifurcat. Chaos. 20, 335 (2010).Google Scholar
  6. 6.
    M. Itoh and L. Chua, Int. J. Bifurcat. Chaos. 18, 3183 (2008).CrossRefGoogle Scholar
  7. 7.
    T. D. Dongale, Health Inform.-Int. J. 2, 15 (2013).CrossRefGoogle Scholar
  8. 8.
    S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett. 10, 1297 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. N. Joglekar and S. J. Wolf, Eur. J. Phys. 30, 661 (2009).CrossRefGoogle Scholar
  10. 10.
    T. A. Wey and S. Benderli, Electron. Lett. 45, 1103 (2009).CrossRefGoogle Scholar
  11. 11.
    Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, and R. S. Williams, Nano Lett. 9, 3640 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. V. Pershin and M. Di Ventra, Phys. Rev. B. 78, 113309 (2008).CrossRefGoogle Scholar
  13. 13.
    T. D. Dongale, S. S. Shinde, R. K. Kamat, and K. Y. Rajpure, J. Alloy. Compd. 593, 267 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Yoon, J. S. Choi, Y. S. Kim, S. H. Hong, I. R. Hwang, Y. C. Park, and B. H. Park, Appl. Phys. Express 4, 041101 (2011).CrossRefGoogle Scholar
  15. 15.
    S. E. Savel’Ev, A. S. Alexandrov, A. M. Bratkovsky, and R. S. Williams, Nanotechnology 22, 254011 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Kim, S. Choi, and W. Lu, ACS Nano. 8, 2369 (2014).CrossRefGoogle Scholar
  17. 17.
    X. He, Y. Yin, J. Guo, H. Yuan, Y. Peng, Y. Zhou, and D. Tang, Nanoscale Res. Lett. 8, 1 (2013).CrossRefGoogle Scholar
  18. 18.
    R. Zhang, S. U. Yuldashev, J. C. Lee, V. S. alishev, T. W. Kang, and D. J. Fu, Microelectron. Eng. 112, 31 (2013).CrossRefGoogle Scholar
  19. 19.
    L. Ying-Tao, L. Shi-Bing, L. Hang-Bing, L. Qi, W. Qin, W. Yan, and L. Ming, Physica B. 20, 017305 (2011).Google Scholar
  20. 20.
    L. Chua, Appl. Phys. A Mater. Sci. Process 102, 765 (2011).CrossRefGoogle Scholar
  21. 21.
    Y. Li, S. Long, Q. Liu, Q. Wang, M. Zhang, H. Lv, and M. Liu, Phys. Status Solidi-RRL 4, 124 (2010).CrossRefGoogle Scholar
  22. 22.
    P. S. Patil, Mater. Chem. Phys. 59, 185 (1999).CrossRefGoogle Scholar
  23. 23.
    V. V. Ganbavle, G. L. Agawane, A. V. Moholkar, J. H. Kim, and K. Y. Rajpure, J. Mater. Eng. Perform. 23, 1204 (2014).CrossRefGoogle Scholar
  24. 24.
    S. V. Mohite and K. Y. Rajpure, Opt. Mater. 36, 833 (2014).CrossRefGoogle Scholar
  25. 25.
    K. H. Choi, M. Mustafa, K. Rahman, B. K. Jeong, and Y. H. Doh, Appl. Phys. A Mater. Sci. Process. 106, 165 (2012).CrossRefGoogle Scholar
  26. 26.
    T. D. Dongale, K. P. Patil, S. B. Mullani, K. V. More, S. D. Delekar, P. S. Patil, P. K. Gaikwad, and R. K. Kamat, Mat. Sci. Semicon. Proc. 35, 174 (2015).CrossRefGoogle Scholar
  27. 27.
    T. D. Dongale, K. P. Patil, P. K. Gaikwad, and R. K. Kamat, Mat. Sci. Semicon. Proc. 38, 228 (2015).CrossRefGoogle Scholar
  28. 28.
    S. S. Shinde and T. D. Dongle, J. Semicond. 36, 034001 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • T. D. Dongale
    • 1
  • S. V. Mohite
    • 2
  • A. A. Bagade
    • 2
  • P. K. Gaikwad
    • 3
  • P. S. Patil
    • 1
    • 4
  • R. K. Kamat
    • 3
  • K. Y. Rajpure
    • 2
  1. 1.Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Embedded Systems and VLSI Research Laboratory, Department of ElectronicsShivaji UniversityKolhapurIndia
  4. 4.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations