Advertisement

Electronic Materials Letters

, Volume 11, Issue 6, pp 1012–1020 | Cite as

Room-temperature ferromagnetism in pure CeO2 nanoparticles prepared by a simple direct thermal decomposition

  • Sumalin Phokha
  • Ekaphan Swatsitang
  • Santi Maensiri
Article

Abstract

This study reports the structural and magnetic properties of CeO2 nanoparticles synthesized using a simple thermal decomposition method. The samples show room-temperature ferromagnetism (RT-FM) when thermally decomposed at above 500°C. Ferromagnetic ordering occurs due to the presence of Ce3+ as confirmed by transmission electron microscopy (TEM) and x-ray absorption near edge spectroscopy (XANES). High resolution TEM results also reveal the Ce2O3 (Ce3+) phase can be attributed to the formation of defects/oxygen vacancies at its surface. The F-center exchange interaction has been proposed as playing an important role in the magnetic behavior of the prepared CeO2 nanoparticles.

Keywords

CeO2 ferromagnetism nanoparticles thermal decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Prellier, A. Fouchet, and B. Mercey, J. Phys.: Condens. Matter 15, R1583 (2003).Google Scholar
  2. 2.
    N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73, 132404 (2006).CrossRefGoogle Scholar
  3. 3.
    X. Chen, G. Li, Y. Su, X. Qui, L. Li, and Z. Zou, Nanotechnology 20, 115606 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature 430, 630 (2004).CrossRefGoogle Scholar
  5. 5.
    R. K. Singhal, S. Kumar, P. Kumari, Y. T. Xing, and E. Saitovitch, Appl. Phys. Lett. 98, 092510 (2011).CrossRefGoogle Scholar
  6. 6.
    J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).CrossRefGoogle Scholar
  7. 7.
    R. K. Singhal, P. Kumari, A. Samariya, S. Kumar, S. C. Sharma, Y. T. Xing, and E. B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).CrossRefGoogle Scholar
  8. 8.
    Q. Xu, Z. Wen, L. Xu, J. Gao, D. Wu, K. Shen, T. Qiu, S. Tang, and M. Xu, Physica B 406, 19 (2011).CrossRefGoogle Scholar
  9. 9.
    X. Xue, L. Liu, Z. Wang, and Y. Wu, J. Appl. Phys. 115, 033902 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74, 161306 R (2006).CrossRefGoogle Scholar
  11. 11.
    J. M. D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 (2006).CrossRefGoogle Scholar
  12. 12.
    B. Vodungbo, Y. Zheng, F. Vidal, D. Demaille, V. H. Etgens, and D. H. Mosca, Appl. Phys. Lett. 90, 062510 (2007).CrossRefGoogle Scholar
  13. 13.
    J. Conesa, Surf. Sci. 339, 337 (1995).CrossRefGoogle Scholar
  14. 14.
    A. Tiwari, V. M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, and A. Gupta, Appl. Phys. Lett. 88, 142511 (2006).CrossRefGoogle Scholar
  15. 15.
    Y. Q. Song, H. W. Zhang, Q. Y. Wen, Y. X. Li, and J. Q. Xiao, Chin. Phys. Lett. 24, 218 (2007).CrossRefGoogle Scholar
  16. 16.
    Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu, and J. Q. Xiao, J. Phys.: Condens. Matter 19, 246205 (2007).Google Scholar
  17. 17.
    A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, and A. Punnoose, Phys. Rev. B 76, 165206 (2007).CrossRefGoogle Scholar
  18. 18.
    K. Noipa, S. Labuayai, E. Swatsitang, and S. Maensiri, Elec. Mater. Lett. 10, 147 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Maensiri, C. Marsingboon, P. Loakul, W. Jareonboon, V. Promarak, P. L. Anderson, and S. Seraphin, Cryst. Growth Des. 7, 950 (2007).CrossRefGoogle Scholar
  20. 20.
    M. Gharagozlou, Chem. Cent. J. 5, 19 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Deshpande, S. Patil, S-VNT. Kuchibhatla, and S. Seal, Appl. Phys. Lett. 87, 133113 (2005).CrossRefGoogle Scholar
  22. 22.
    A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).CrossRefGoogle Scholar
  23. 23.
    S. Sathyamurthy, K. J. Leonard, R. T. Dabestani, and M. P. Paranthaman, Nanotechnology 16, 1960 (2005).CrossRefGoogle Scholar
  24. 24.
    J. Hormes, M. Pantelouris, G. B. Balazs, and B. Rambaby, Solid State Ionics 136, 945 (2000).CrossRefGoogle Scholar
  25. 25.
    F. Zhang, P. Wang, J. Koberstein, S. Khalid, and S. W. Chan, Surf. Sci. 563, 74 (2004).CrossRefGoogle Scholar
  26. 26.
    J. Zhang, Z. Wu, T. Liu, T. Hu, Z. Wu, and X. Ju, J. Synchrotron Rad. 8, 531 (2001).CrossRefGoogle Scholar
  27. 27.
    P. Nachimuthu, W. C. Shih, R. S. Liu, L. Y. Jang, and J. M. Chen, J. Solid State Chem. 149, 408 (2000).CrossRefGoogle Scholar
  28. 28.
    M. Y. Ge, H. Wang, E. Z. Liu, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Appl. Phys. Lett. 93, 062505 (2008).CrossRefGoogle Scholar
  29. 29.
    J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sumalin Phokha
    • 1
  • Ekaphan Swatsitang
    • 1
  • Santi Maensiri
    • 2
  1. 1.Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand

Personalised recommendations