Electronic Materials Letters

, Volume 10, Issue 2, pp 503–507 | Cite as

Core-shell nanowire based electrical surface fastener used for room-temperature electronic packaging bonding

  • Peng Wang
  • Yang Ju
  • Atsushi Hosoi


With the ongoing miniaturization in electronic packaging, the traditional solders suffer from severe performance degradation. In addition, the high temperature required in the traditional solder reflow process may damage electronic elements. Therefore, there is an increasing urgent need for a new kind of nontoxic solder that can afford good mechanical stress and electrical contact at low temperature. This paper presents a method of fabricating nanowire surface fastener for the application of microelectronic packaging bonding at room temperature. This surface fastener consists of copper core and polystyrene shell nanowire arrays. It showed an adhesive strength of ∼24 N/cm2 and an electrical resistance of ∼0.41 × 10−2 Ω·cm2. This kind of nanowire surface fastener may enable the exploration of wide range applications, involving assembly of components in the electronic packaging.


nanowire surface fastener electronic packaging solder bump 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. B. Massalski, Binary Alloy Phase Diagrams, p. 1848, AMS International, Materials Park, OH (1987).Google Scholar
  2. 2.
    M. R. Harrison, J. H. Vincent, and H. A. H. Steen, Solder. Surf. Mt.Tech. 13, 21 (2001).CrossRefGoogle Scholar
  3. 3.
    R. Takigawa, E. Higurashi, T. Suga, and R. Swada, Appl. Phys. Express 1, 112201 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, Nature 405, 681 (2000).CrossRefGoogle Scholar
  5. 5.
    L. Qu, L. Dai, M. Stone, Z. Xia, and Z. L. Wang, Science 322, 238 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Park, B. A. Cola, T. Siegmund, J. Xu, M. R. Maschmann, T. S. Fisher, and H. Kim, Nanotechnology 17, 2294 (2006).CrossRefGoogle Scholar
  7. 7.
    L. Qu and L. Dai, Adv. Mater. 19, 3844 (2007).CrossRefGoogle Scholar
  8. 8.
    I. Soga, D. Kondo, Y. Yamaguchi, T. Iwai, M. Mizukoshi, Y. Awano, K. Yube, and T. Fujii, Proc. 58 th Elec. Comp. C., p. 1390, IEEE Inst. Elec. Electron. Eng. Inc., Florida, USA (2008).Google Scholar
  9. 9.
    A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, P. M. Ajayan, and R. Baskaran, Appl. Phys. Lett. 89, 163120 (2006).CrossRefGoogle Scholar
  10. 10.
    Y. Ju, M. Amano and M. Chen, Nanotechnology 23, 365202 (2012).CrossRefGoogle Scholar
  11. 11.
    P. Wang, Y. Ju, M. Chen, A. Hosoi, and Y. Iwasaki, Appl. Phys. Express 6, 035001 (2013).CrossRefGoogle Scholar
  12. 12.
    P. Wang, Y. Ju, Y. Cui, and A. Hosoi, Langmuir 29, 13909 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Jin, Y. Lee, S.-M. Jeon, B.-H. Sohn, W.-S. Chae, and J.-K. Lee, J. Mater. Chem. 22, 23368 (2012).CrossRefGoogle Scholar
  14. 14.
    Y. Liu, D. A. Geiger, and D. Shangguan, Proc. 55 th Elec. Comp. C., p. 970, IEEE Inst. Elec. Electron. Eng. Inc., Florida, USA (2005).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations