Advertisement

Electronic Materials Letters

, Volume 11, Issue 4, pp 618–624 | Cite as

Enhanced photoresponse of Cu(In,Ga)Se2/CdS heterojunction fabricated using economical non-vacuum methods

  • Sreekanth Mandati
  • Bulusu V. Sarada
  • Suhash R. Dey
  • Shrikant V. Joshi
Article

Abstract

The present study demonstrates the fabrication of a CIGS/CdS heterojunction with enhanced photoelectrochemical performance using low-cost non-vacuum methods. A simplified economical pulse electrodeposition technique, with a two-electrode system in an additive-free electrolyte, has been used for the preparation of chalcopyrite Cu(In,Ga)Se2 (CIGS) thin-films avoiding the selenization process and CdS subsequently chemical bath deposited onto these CIGS films. Photoelectrochemical (PEC) performance of bare CIGS and the CIGS/CdS heterojunction has been investigated in conventional Na2SO4 electrolyte under chopped solar simulated light. The PEC analysis reveals nearly twenty-fold increase in the photoresponse of the CIGS/CdS heterojunction compared to bare CIGS films. The CIGS/CdS junction has also been tested in a PEC cell using a novel sulphide/sulphite electrolyte for the first time and found to yield further enhancement in photocurrent density with exceptional stability. Thus, apart from fabrication of an efficient CIGS/CdS heterojunction economically, the present study proposes use of a novel electrolyte yielding superior performance and showing potential for commercialization of CIGS devices and their use in photoelectrochemical cells.

Keywords

Cu(In,Ga)Se2 thin-films pulsed electrodeposition CIGS/CdS heterojunction photocurrent solar energy materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi-R 8, 219 (2014).CrossRefGoogle Scholar
  2. 2.
    M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt. Res. Appl. 21, 827 (2013).CrossRefGoogle Scholar
  3. 3.
    P. Reinhard, A. Chirila, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Twentieth IEEE International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 79, Kyoto, Japan (2013).Google Scholar
  4. 4.
    A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buechelerm, and A. N. Tiwari, Nat. Mater. 12, 1107 (2013).CrossRefGoogle Scholar
  5. 5.
    P. Jackson, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovol: Res. Appl. 19, 894 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Nat. Mater. 10, 857 (2011).CrossRefGoogle Scholar
  7. 7.
    T. Nakada, Electron. Mater. Lett. 8, 179 (2012).CrossRefGoogle Scholar
  8. 8.
    D. Abou-Ras, T. Kirchartz, and U. Rau, Advanced Characterization Techniques for Thin FIlm Solar Cells, Wiley-VCH Verlag, Weinheim, Germany (2011).CrossRefGoogle Scholar
  9. 9.
    I. M. Dharmadasa, Advances in Thin-Film Solar Cells, Pan Stanford Publishing, Singapore (2013).Google Scholar
  10. 10.
    S. Aksu, S. Pethe, A. Kleiman-Shwarsctein, S. Kundu, and M. Pinarbasi, 38th IEEE Photovotaics Specialists Conference, 003092, Austin TX, USA (2012).Google Scholar
  11. 11.
    R. N. Bhattacharya, Sol. Energ. Mat. Sol. Cells 113, 96 (2013).CrossRefGoogle Scholar
  12. 12.
    R. N. Bhattacharya, M.-K. Oh, and Y. Kim, Sol. Energ. Mat. Sol. Cells 98, 198 (2012).CrossRefGoogle Scholar
  13. 13.
    R. N. Bhattacharya, J. Electrochem. Soc. 157, 406 (2010).CrossRefGoogle Scholar
  14. 14.
    R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason, and R. N. Noufi, J. Electrochem. Soc. 144, 1376 (1997).CrossRefGoogle Scholar
  15. 15.
    H. Lee, H. Yoon, C. Ji, D. Lee, J.-H. Lee, J.-H. Yun, and Y. Kim, J. Electron. Mater. 41, 3375 (2012).CrossRefGoogle Scholar
  16. 16.
    N. Stratieva, E. Tzvetkova, M. Ganchev, K. Kochev, and I. Tomov, Sol. Energ. Mat. Sol. Cells 45, 87 (1997).CrossRefGoogle Scholar
  17. 17.
    C. Guillen and J. Herrero, Sol. Energ. Mat. Sol. Cells 43, 47 (1996).CrossRefGoogle Scholar
  18. 18.
    R. Friedfeld, R. P. Raffaelle, and J. G. Mantovani, Sol. Energ. Mat. Sol. Cells 58, 375 (1999).CrossRefGoogle Scholar
  19. 19.
    D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, Sol. Energy 77, 725 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, J. Renew. Sustain. Energy 5, 031602 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, J. Electrochem. Soc. 160, 173 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, J. Power. Sources 273, 149 (2015).CrossRefGoogle Scholar
  23. 23.
    T. J. Jacobsson, C. Platzer-Bjorkman, M. Edoff, and T. Edvinsson, Int. J. Hydrogen Energ. 38, 15027 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Ye, H. S. Park, V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, B. A. Korgel, and A. J. Bard, J. Phys. Chem. C 115, 234 (2011).CrossRefGoogle Scholar
  25. 25.
    R. C. Alkire, D. M. Kolb, J. Lipkowski, and P. N. Ross, Advances in Electrochemical Science and Engineering: Photoelectrochemical Materials and Energy Conversion Processes, WILEY-VCH Verlag, Weinheim, Germany (2010).CrossRefGoogle Scholar
  26. 26.
    F. Liu, C. Huang, Y. Lai, Z. Zhang, J. Li, and Y. Liu, J. Alloy Compd. 509, 129 (2011).CrossRefGoogle Scholar
  27. 27.
    R. Inguanta, P. Livreri, S. Piazza, and C. Sunseri, Electrochem. SolidSt. 13, 22 (2010).CrossRefGoogle Scholar
  28. 28.
    X. Chen and W. Shangguan, Front. Energy 7, 111 (2013).CrossRefGoogle Scholar
  29. 29.
    H. Sheng, L. Yu, Y. Jian-Hua, and Y. Ying, in Nanotechnology for Sustainable Energy, p. 219, American Chemical Society (2013).Google Scholar
  30. 30.
    D. Prasher and P. Rajaram, Electron. Mater. Lett., 8, 515 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Jeong, H. Choi, J. Hwang, J. Park, K. Im, Y. Jung, and M. Jeon, Electron. Mater. Lett. 9, 883 (2013).CrossRefGoogle Scholar
  32. 32.
    Y.-P. Fu, R.-W. You, and K. K. Lew, J. Electrochem. Soc. 156, 553 (2009).CrossRefGoogle Scholar
  33. 33.
    S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, Mat. Lett. 118, 158 (2014).CrossRefGoogle Scholar
  34. 34.
    L. M. Peter and K. G. Upul Wijayantha, ChemPhysChem, 15, 1983 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Gloeckler and J. R. Sites, Thin Solid Films 481, 241 (2005).CrossRefGoogle Scholar
  36. 36.
    A. Hagfeldt, H. Lindström, S. Södergren and S. Lindquist, J. Electroanal. Chem. 381, 39 (1995).CrossRefGoogle Scholar
  37. 37.
    R. Beranek and H. Kisch, Electrochem. Commun. 9, 761 (2007).CrossRefGoogle Scholar
  38. 38.
    A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, Int. J. Hydrogen Energ. 39, 4170 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre for Solar Energy MaterialsInternational Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)Balapur Post, HyderabadIndia
  2. 2.Department of Materials Science and Metallurgical EngineeringIndian Institute of TechnologyHyderabad, Yeddumailaram, HyderabadIndia

Personalised recommendations