Advertisement

Electronic Materials Letters

, Volume 10, Issue 2, pp 337–343 | Cite as

Effect of milling on properties and consolidation of AlN by high-frequency induction heated sintering

  • In-Jin ShonEmail author
  • Hanjung Kwon
  • Hyun-Su Oh
Article

Abstract

Commercial AlN powders were high-energy ball milled for various durations, and consolidated without a binder, using the high-frequency induction heated sintering method (HFIHS). The effect of milling on the sintering behavior, crystallite size and mechanical properties of AlN compacts were evaluated. A dense AlN compact with a relative density of up to 96% could be readily obtained within 1 min. The ball milling effectively refined the crystallite structure of AlN powders, and facilitated the subsequent densification. The sinter-onset temperature was reduced appreciably, by the prior milling for 10 h from 750°C to 600°C. Accordingly, the relative density of AlN compact increased, as the milling time increased. It is clearly demonstrated that a quick densification of AlN bulk materials to near the theoretical density could be obtained by the combination of HFIHS and the preparatory high-energy ball milling process.

Keywords

nanomaterials sintering hardness fracture toughness AlN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Laurel, Ceramic Bulletin. 69, 1801 (1990).Google Scholar
  2. 2.
    X. Jiang, Y. Chen, X. W. Sun, and L. P. Huang, J. Eur. Ceram. Soc. 19, 2033 (1999).CrossRefGoogle Scholar
  3. 3.
    D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, Mater. Lett. 57, 355 (2002).CrossRefGoogle Scholar
  4. 4.
    D. Qin, W. Chang, J. Zhou, and Y. Chen, Thermochim. Acta. 236, 205 (1994).CrossRefGoogle Scholar
  5. 5.
    H. Gleiter, Nanostruct. Mater. 6, 3 (1995).CrossRefGoogle Scholar
  6. 6.
    J. R. Yoon, D. J. Choi, K. H. Lee, J. Y. Lee, and Y. H. Kim, Electron. Mater. Lett. 4, 167 (2008).Google Scholar
  7. 7.
    J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).CrossRefGoogle Scholar
  8. 8.
    A. M. George, J. Iniguez, and L. Bellaiche, Nature 413, 54 (2001).CrossRefGoogle Scholar
  9. 9.
    T. Prakash, Electron. Mater. Lett. 8, 231 (2012).CrossRefGoogle Scholar
  10. 10.
    C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B: Chemical. 3, 147 (1991).CrossRefGoogle Scholar
  11. 11.
    E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Letters 1, 149 (2001).CrossRefGoogle Scholar
  12. 12.
    C. F. Chen, M. E. Perisse, and A. F. Ramire, J. Mater. Sci. 29, 1595 (1994).CrossRefGoogle Scholar
  13. 13.
    G. Pezzotti, A. Nakahira, and M. Tajika, J. Eur. Ceram. Soc. 20, 1319 (2000).CrossRefGoogle Scholar
  14. 14.
    K. Watari, K. Ishizaki, and T. Fujikawa, J. Mater. Sci. 27, 2627 (1992).CrossRefGoogle Scholar
  15. 15.
    A. Hafidi, M. Billy and J. P. Lecompte, J. Mater. Sci. 27, 3405 (1992).CrossRefGoogle Scholar
  16. 16.
    A. Morell and A. Mermosin, Bull. Am. Ceram. Soc. 59, 626 (1980).Google Scholar
  17. 17.
    D. J. Chen and M. J. Mayo, J. Am. Ceram. Soc. 79, 906 (1996).CrossRefGoogle Scholar
  18. 18.
    D. J. Chen and M. J. Mayo, NanoStruct. Mater. 2, 469 (1993).CrossRefGoogle Scholar
  19. 19.
    N. R. Park, I. Y. Ko, J. K. Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Inter. 17, 233 (2011).CrossRefGoogle Scholar
  20. 20.
    S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011).CrossRefGoogle Scholar
  21. 21.
    I.-J. Shon, G.-W. Lee, J.-M. Doh, and J.-K. Yoon, Electron. Mater. Lett. 9, 219 (2013).CrossRefGoogle Scholar
  22. 22.
    C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 207, Plenum Press, New York, (1998).CrossRefGoogle Scholar
  23. 23.
    Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).CrossRefGoogle Scholar
  24. 24.
    J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).CrossRefGoogle Scholar
  25. 25.
    J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).CrossRefGoogle Scholar
  26. 26.
    J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta. Mater. 51, 4487 (2003).CrossRefGoogle Scholar
  27. 27.
    K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Advanced Materials Engineering and Center for Advanced Bioimaging Research, Engineering CollegeChonbuk National UniversityJeonjuKorea
  2. 2.Minerals and Materials Processing DivisionKorea Institute of Geoscience, Mining and Materials ResourcesDaejeonKorea

Personalised recommendations