Electronic Materials Letters

, Volume 10, Issue 1, pp 253–258 | Cite as

Structure and electrochemical behavior of LiMnBO3 synthesized at various temperatures

  • Yong-Suk Lee
  • Hyukjae LeeEmail author


LiMnBO3 is synthesized via solid state reaction at various calcination temperatures, in order to investigate their lithium electrochemical behavior for Li-ion batteries. At lower calcination temperature, LiMnBO3 is composed of mostly monoclinic phase, with a small amount of hexagonal phase, but the ratio of hexagonal/monoclinic phase increases with an increase of calcination temperature, resulting in almost pure hexagonal phase at 800°C. Generally, monoclinic/hexagonal mixed phased LiMnBO3 displays better lithium electrochemical performance. While the pristine LiMnBO3 shows very low capacity, carbon-incorporated LiMnBO3 shows hugely improved charge-discharge capacity, in all samples. The maximum capacity, 108.2 mAh/g after 50 cycles, is obtained from LiMnBO3/C composite calcined at 600°C.


borates calcination temperatures Li-ion batteries cathode materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Goodenough and Y. Kim, Chem. Mater. 22, 5872 (2010).CrossRefGoogle Scholar
  2. 2.
    T. B. Reddy, Linden’s Handbook of Batteries, Fourth ed., McGraw Hill, New York (2011).Google Scholar
  3. 3.
    A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).CrossRefGoogle Scholar
  4. 4.
    H. Song, K. T. Lee, M. G. Kim, L. F. Nazar, and J. Cho, Adv. Funct. Mater. 20, 3818 (2010).CrossRefGoogle Scholar
  5. 5.
    R. Mukherjee, R. Krishnan, T.-M. Lu, and N. Koratkar, Nano Energy 1, 518 (2012).CrossRefGoogle Scholar
  6. 6.
    B. L. Ellis, K. T. Lee, and L. F. Nazar, Chem. Mater. 22, 691 (2010).CrossRefGoogle Scholar
  7. 7.
    Y. Oh, S. Nam, S. Wi, S. Hong, and B. Park, Electron. Mater. Lett. 8, 91 (2012).CrossRefGoogle Scholar
  8. 8.
    M.-S. Yoon, M. Islam, Y. M. Park, and S.-C. Ur, Electron. Mater. Lett. 9, 187 (2013).CrossRefGoogle Scholar
  9. 9.
    R. Dominko, J. Power Sources 184, 462 (2008).CrossRefGoogle Scholar
  10. 10.
    T. Muraliganth, K. R. Stroukoff, and A. Manthiram, Chem. Mater. 22, 5754 (2010).CrossRefGoogle Scholar
  11. 11.
    V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard, and Y. Piffard, Solid State Ionics 139, 37 (2001).CrossRefGoogle Scholar
  12. 12.
    A. Yamada, N. Iwane, Y. Harada, S. Nishimura, Y. Koyama, and I. Tanaka, Adv. Mater. 22, 3583 (2010).CrossRefGoogle Scholar
  13. 13.
    L. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, Y. Chen, and Q. Kuang, J. Alloy. Compd. 494, 415 (2010).CrossRefGoogle Scholar
  14. 14.
    Y. Z. Dong, Y. M. Zhao, Z. D. Shi, X. N. An, P. Fua, and L. Chen, Electrochim. Acta 53, 2339 (2008).CrossRefGoogle Scholar
  15. 15.
    J. C. Kim, C. J. Moore, B. Kang, G. Hautier, A. Jain, and G. Ceder, J. Electrochem. Soc. 158, A309 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Afyon, D. Kundu, F. Krumeich, and R. Nesper, J. Power Sources 224, 145 (2013).CrossRefGoogle Scholar
  17. 17.
    O. S. Bondareva, M. A. Simonov, Y. K. Egorovtismenko, and N. V. Belov, Sov. Phys. Crystallogr. 23, 269 (1978).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Wolfram Korea Co. YonginGyeonggiKorea
  2. 2.Materials Research Center for Energy and Green TechnologyAndong National UniversityAndong, GyeongbukKorea

Personalised recommendations