Electronic Materials Letters

, Volume 10, Issue 1, pp 5–11 | Cite as

Ab initio calculations of electronic and optical properties of BeO nanosheet

  • Sh. Valedbagi
  • J. Jalilian
  • S. M. Elahi
  • S. Majidi
  • A. Fathalian
  • V. Dalouji


The electronic and the linear optical properties of BeO nanosheet and wurtzite structure are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW+ lo) in the frame work of the density functional theory (DFT). The dielectric tensor is derived within the random phase approximation (RPA). Specifically, dielectric function, absorption coefficient, optical conductivity, extinction index, loss function, reflectivity and the refraction index of the BeO nanosheet are calculated for both parallel and perpendicular electric field polarizations. The results show that the optical conductivity in Ex starts with a gap about 5.89 eV confirms that BeO nanosheet has semiconductor property also the optical spectra are anisotropic along these two polarizations. The static refractive index of nanosheet is smaller than wurtzite structure.


BeO nanosheet density functional theory electronic structure optical property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  3. 3.
    Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).CrossRefGoogle Scholar
  4. 4.
    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).CrossRefGoogle Scholar
  5. 5.
    K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Zhou, Q. Wang, Q. Sun, and P. Jena, Appl. Phys. Lett. 98, 063108 (2011).CrossRefGoogle Scholar
  7. 7.
    B. S. Pujari and D. G. Kanhere, J. Phys. Chem. C 113, 21063 (2009).CrossRefGoogle Scholar
  8. 8.
    H. ahin, C. Ataca, and S. Ciraci, Appl. Phys. Lett. 95, 222510 (2009).CrossRefGoogle Scholar
  9. 9.
    D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 035427 (2008).CrossRefGoogle Scholar
  10. 10.
    R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H.-M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K. Geim, Small 6, 2877 (2010).CrossRefGoogle Scholar
  11. 11.
    H. Şahin, M. Topsakal, and S. Ciraci, Phys. Rev. B 83, 115432 (2011).CrossRefGoogle Scholar
  12. 12.
    F. Withers, M. Dubois, and A. K. Savchenko, Phys. Rev. B 82, 073403 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994).CrossRefGoogle Scholar
  14. 14.
    X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Phys. Rev. B 51, 6868 (1995).CrossRefGoogle Scholar
  15. 15.
    C. H. Park and S. G. Louie, Nano Lett. 8, 2200 (2008).CrossRefGoogle Scholar
  16. 16.
    Z. Zhang and W. Guo, Phys. Rev. B 77, 075403 (2008).CrossRefGoogle Scholar
  17. 17.
    L. Sun, Y. Li, Z. Li, Q. Li, Z. Zhou, Z. Chen, J. Yang, and J. G. Hou, J. Chem. Phys. 129, 174114 (2008).CrossRefGoogle Scholar
  18. 18.
    A. R. Botello-Méndez, F. López-Uría, M. Terrones, and H. Terrones, Nano Lett. 8, 1562 (2008).CrossRefGoogle Scholar
  19. 19.
    H. Li, J. Dai, J. Li, S. Zhang, J. Zhou, L. Zhang, W. Chu, D. Chen, H. Zhao, J. Yang, and Z. Wu, J. Phys. Chem. C 114, 11390 (2010).CrossRefGoogle Scholar
  20. 20.
    X. Zhang, Z. Liu, and S. Hark, Solid State Commun. 143, 317 (2007).CrossRefGoogle Scholar
  21. 21.
    V. E. Henrich, Rep. Prog. Phys. 48, 1481 (1985).CrossRefGoogle Scholar
  22. 22.
    V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, p. 419, Cambridge University Press, Cambridge (1994).Google Scholar
  23. 23.
    H.-J. Freund, Angew. Chem. 109, 444 (1997).CrossRefGoogle Scholar
  24. 24.
    B. Amrani, F. El Haj Hassan, and H. Akbarzadeh, J. Phys.: Condens. Matter 19, 436216 (2007).Google Scholar
  25. 25.
    S. Duman, A. Sütlü, S. Bagci, H. M. Tütüncü, and G. P. Srivastava, J. Appl. Phys. 105, 033719 (2009).CrossRefGoogle Scholar
  26. 26.
    A. L. Ivanovskii, I. R. Shein, Yu. N. Makurin, V. S. Kiiko, and M. A. Gorbunova, Inorg. Mater. 45, 223 (2009).CrossRefGoogle Scholar
  27. 27.
    P. B. Sorokin, A. S. Fedorov, and L. A. Chernozatonski, Phys. Solid State 48, 398 (2006).CrossRefGoogle Scholar
  28. 28.
    G. Vidal-Valat, J. P. Vidal, K. Kurki-Suonio, and R. Kurki- Suonio, Acta Crystallogr. Sect. A 43, 540 (1987).CrossRefGoogle Scholar
  29. 29.
    B. Baumeier, P. Krüger, and J. Pollmann, J. Phys. Rev. B 76, 085407 (2007).CrossRefGoogle Scholar
  30. 30.
    C. L. Freeman, F. Claeyssens, N. L. Allan, and J. H. Harding, Phys. Rev. Lett. 96, 066102 (2006).CrossRefGoogle Scholar
  31. 31.
    A. Continenza, R. M. Wentzcovitch, and A. J. Freeman, Phys. Rev. B 41, 3540 (1990).CrossRefGoogle Scholar
  32. 32.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  33. 33.
    K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).CrossRefGoogle Scholar
  34. 34.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  35. 35.
    W. Wu, P. Lu, Z. Zhang, and W. Guo, ACS Appl. Mater. Interfaces 3, 4787 (2011).CrossRefGoogle Scholar
  36. 36.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
  37. 37.
    A. Continenza, R. M. Wentzcovitch, and A. Freeman, J. Phys. Rev. B 41, 3540 (1990).CrossRefGoogle Scholar
  38. 38.
    A. Ijchanot, I. Baraille, C. Larrieu, and M. Chaillet, Phys. Rev. B 52, 17480 (1995).CrossRefGoogle Scholar
  39. 39.
    D. M. Roessler, W. C. Walker, and E. Loh, J. Phys. Chem. Solids 30, 157 (1969).CrossRefGoogle Scholar
  40. 40.
    T. Fujiwara and Y. Ishii, Quasicrystals, Elsevire, USA (2008).Google Scholar
  41. 41.
    K. B. Joshi, R. Jain, R. K. Pandya, B. L. Ahuja, and B. K. Sharma, J. Chem. Phys. 111, 163 (1999).CrossRefGoogle Scholar
  42. 42.
    D. Groh, R. Pandey, Munima B. Sahariah, E. Amzallag, I. Baraille, and M. Rerat, J. Phy. Chem. Solids 70, 789 (2009).CrossRefGoogle Scholar
  43. 43.
    A. Fathalian, R. Moradian, and M. Shahrokhi, Solid State Comm. 156, 1 (2013).CrossRefGoogle Scholar
  44. 44.
    F. Wooten, Optical Properties of Solids, p. 200, New York, Academic Press (1972).Google Scholar
  45. 45.
    G. G. Fuentes, Ewa Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R. J. Kalenczuk, M. Knupfer, and J. Fink, Phy. Rev. B 67, 035429 (2003).CrossRefGoogle Scholar
  46. 46.
    A. Boukortt, S. Berrah, and R. Hayn, Physica B 405, 763 (2010).CrossRefGoogle Scholar
  47. 47.
    F. Kootstra, P. L. de Beoeij, and J. G. Sniders, Phys. Rev. B 62, 7071 (2000).CrossRefGoogle Scholar
  48. 48.
    S. D. Mo and W. Y. Ching, Phys. Rev. B 51, 13023 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sh. Valedbagi
    • 1
  • J. Jalilian
    • 2
  • S. M. Elahi
    • 1
  • S. Majidi
    • 3
  • A. Fathalian
    • 4
  • V. Dalouji
    • 4
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Young Researchers Club, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  3. 3.Department of PhysicIslamic Azad UniversitySaveh Branch, SavehIran
  4. 4.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations