Electronic Materials Letters

, Volume 9, Issue 2, pp 125–132

Subwavelength metal optics and antireflection

Review Paper


Over the past decade or so, research in metamaterials has opened up new ways in which to control, manipulate, and utilize electromagnetic radiation. One of these new applications is anti-reflection, or unity absorption, primarily achievable through using thin metamaterial films/surfaces (meta-films) incorporating subwavelength features. This review discusses the theoretical and experimental designs for thin metallic-films, with emphasis on absorption in the infrared and visible wavelengths, as well as future endeavors in a host of applications.


impedance-matching metamaterials meta-films anti-reflection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Cheng, J. Xie, H. Zhang, C. Wang, and N. Zhang, Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum, J. Opt. Soc. Am. B 29 1503 (2012).CrossRefGoogle Scholar
  2. 2.
    J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, Unifying approach to left-handed material design, Opt. Lett. 31 3620 (2006).CrossRefGoogle Scholar
  3. 3.
    C. F. Bohren, How can a particle absorb more than the light incident upon it?, Am. J. Phys. 51, (1983).Google Scholar
  4. 4.
    N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100 1 (2008).CrossRefGoogle Scholar
  5. 5.
    D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 4184 (2000).CrossRefGoogle Scholar
  6. 6.
    C. M. Watts, X. Liu, and W. J. Padilla, Metamaterial electromagnetic wave absorbers, Adv. Mater. 24, OP98 (2012).CrossRefGoogle Scholar
  7. 7.
    B. Yao and L. Li, Antennas Propagation and EM Theory (ISAPE), 2010 9th International Symposium on, pp. 1089–1092, Nat. Key Lab. of Sci. & Technol. on Antennas & Microwave, Xidian Univ., Xi’an, China (2010).Google Scholar
  8. 8.
    K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration, Opt. Express 19 14260 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Hao et al., High performance optical absorber based on a plasmonic metamaterial, Appl. Phys. Lett. 96 251104 (2010).CrossRefGoogle Scholar
  10. 10.
    X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance, Phys. Rev. Lett. 104 1 (2010).Google Scholar
  11. 11.
    K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers, Nature Communications 2 517 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Hao, L. Zhou, and M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials, Phys. Rev. B 83 1 (2011).Google Scholar
  13. 13.
    J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, Wideband perfect light absorber at midwave infrared using multiplexed metal structures, Opt. Lett. 37 371 (2012).CrossRefGoogle Scholar
  14. 14.
    G. Dolling, C. Enkrich, M. Wegener, and J. Zhou, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials, Optics 30 3198 (2005).Google Scholar
  15. 15.
    K. B. Alici and E. Ozbay, Photonic metamaterial absorber designs for infrared solar cell applications, Proc. SPIE 7772 77721B (2010).CrossRefGoogle Scholar
  16. 16.
    C. Lin and R. Chern, Polarization-independent broad-band nearly perfect absorbers in the visible regime, Opt. Express 19 415 (2011).CrossRefGoogle Scholar
  17. 17.
    C.-W. Cheng et al., Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays, Opt. Express 20 10376 (2012).CrossRefGoogle Scholar
  18. 18.
    C. Hu, Z. Zhao, X. Chen, and X. Luo, Realizing near-perfect absorption at visible frequencies, Opt. Express 17 11039 (2009).CrossRefGoogle Scholar
  19. 19.
    Y. Ye and Y. Jin, Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime, JOSA B 27 498 (2010).CrossRefGoogle Scholar
  20. 20.
    X. Liu et al., Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett. 107 4 (2011).Google Scholar
  21. 21.
    B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, and I. Khoo, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, Optics 19 15221 (2011).Google Scholar
  22. 22.
    P. R. West et al., Searching for better plasmonic materials, Laser Photonics Rev. 4 795 (2010).CrossRefGoogle Scholar
  23. 23.
    A. Boltasseva and H. A. Atwater, Materials science. Lowloss plasmonic metamaterials, Science (New York, N.Y.) 331, 290 (2011).CrossRefGoogle Scholar
  24. 24.
    G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials, Proceedings of the National Academy of Sciences 109 8834 (2012).CrossRefGoogle Scholar
  25. 25.
    G. Naik, J. Liu, A. Kildishev, and V. Shalaev, Negative refraction in Al: ZnO/ZnO metamaterial in the near-infrared, http://arxiv.org/abs/1110.3231 (2011).Google Scholar
  26. 26.
    Q. Zhao, T. Fan, J. Ding, D. Zhang, Q. Guo, and M. K., Super black and ultrathin amorphous carbon lm inspired by anti-reflection architecture in butterfly wing, Carbon 49 877.Google Scholar
  27. 27.
    P. Clapham, Reduction of Lens Reflexion by the “Moth Eye” Principle, Nature 244 281 (1973).CrossRefGoogle Scholar
  28. 28.
    A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, Cylinder light concentrator and absorber: theoretical description, Opt. Express 18 16646 (2010).CrossRefGoogle Scholar
  29. 29.
    B. Wood, Metamaterials and invisibility, C. R. Phys. 10, 379 (2009).CrossRefGoogle Scholar
  30. 30.
    D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies, Science (New York, N.Y.) 314, 977 (2006).CrossRefGoogle Scholar
  31. 31.
    A. Polman and H. A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics, Nature Materials 11 174 (2012).CrossRefGoogle Scholar
  32. 32.
    I. Puscasu and W. L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches, Appl. Phys. Lett. 92 233102 (2008).CrossRefGoogle Scholar
  33. 33.
    B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves, Appl. Phys. Lett. 97 051906 (2010).CrossRefGoogle Scholar
  34. 34.
    B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, Dual band switchable metamaterial, Pr. Electromagn. Res. B. 24 121 (2010).CrossRefGoogle Scholar
  35. 35.
    H.-T. Chen et al., Active terahertz metamaterial devices, Nature 444 597 (2006).CrossRefGoogle Scholar
  36. 36.
    N. P. Johnson, R. M. De La Rue, and S. A. De La Rue, Metamaterials at optical frequencies: fabrication and measurements, Appl. Metamat. 30 1 (2009).Google Scholar
  37. 37.
    C. Enkrich et al., Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials, Adv. Mater. 17 2547 (2005).CrossRefGoogle Scholar
  38. 38.
    N. Liu et al., Three-dimensional photonic metamaterials at optical frequencies, Nature Materials 7 31 (2008).CrossRefGoogle Scholar
  39. 39.
    N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Infrared perfect absorber and its application as plasmonic sensor, Nano Lett. 10 2342 (2010).CrossRefGoogle Scholar
  40. 40.
    B. Kang et al., Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure, Opt. Express 18 16492 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Pendry and D. Schurig, Controlling electromagnetic fields, Science 312 1780 (2006).CrossRefGoogle Scholar
  42. 42.
    M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, Phys. Rev. Lett. 100 063903 (2008).CrossRefGoogle Scholar
  43. 43.
    S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E 74 1 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Engineering and Department of PhysicsBrown UniversityProvidenceUSA

Personalised recommendations