Advertisement

Applications of machine learning techniques in side-channel attacks: a survey

  • Benjamin HettwerEmail author
  • Stefan Gehrer
  • Tim Güneysu
Regular Paper

Abstract

With increasing expansion of the Internet of Things, embedded devices equipped with cryptographic modules become an important factor to protect sensitive data. Even though the employed algorithms in such devices are mathematically secure in theory, adversaries may still be able to compromise them by means of side-channel attacks. In power-based side-channel attacks, the instantaneous power consumption of the target is analyzed with statistical tools to draw conclusions about the secret keys that are used. There is a recent line of work that additionally makes use of techniques from the machine learning domain to attack cryptographic implementations. Since a complete review of this emerging field has not been done so far, this research aims to survey the current state of the art. We use a target-based classification to differentiate published work and drive general conclusions according to a common machine learning workflow. Furthermore, we outline the relationship between traditional power analysis techniques and machine learning-based attacks. This enables researchers to gain a better understanding of the topic in order to design new attack methods as well as potential countermeasures.

Keywords

Side-channel attacks Power analysis Machine learning Deep learning 

Notes

Funding

This work is supported in parts by the German Federal Ministry of Education and Research (BMBF) under grant agreement number 16KIS0606K(SecRec).

References

  1. 1.
    Scikit-learn: Machine learning in Python. http://scikit-learn.org/stable/. Accessed 19 Mar 2019
  2. 2.
    Alva, J.A.V., Estrada, E.G.: A generalization of Shapiro–Wilk’s test for multivariate normality. Commun. Stat. Theory Methods 38(11), 1870–1883 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Banciu, V., Oswald, E., Whitnall, C.: Reliable information extraction for single trace attacks. In: Proceedings of the 2015 Design, Automation and Test in Europe Conference, DATE ’15, pp. 133–138. EDA Consortium, San Jose (2015)Google Scholar
  4. 4.
    Bartkewitz, T.: Leakage prototype learning for profiled differential side-channel cryptanalysis. IEEE Trans. Comput. 65(6), 1761–1774 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic multi-class support vector machines. In: Mangard, S. (ed.) Smart Card Research and Advanced Applications: 11th International Conference, CARDIS 2012, Graz, Austria, November 28–30, 2012, Revised Selected Papers, pp. 263–276. Springer, Berlin (2013)CrossRefGoogle Scholar
  6. 6.
    Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA: first results of using principal component analysis for extensive power analysis. In: Dunkelman, O. (ed.) Topics in Cryptology—CT-RSA 2012: The Cryptographers’ Track at the RSA Conference 2012, San Francisco, CA, USA, February 27–March 2, 2012. Proceedings, pp. 383–397. Springer, Berlin (2012)Google Scholar
  7. 7.
    Bhasin, S., Bruneau, N., Danger, J.L., Guilley, S., Najm, Z.: Analysis and improvements of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) Security, Privacy, and Applied Cryptography Engineering: 4th International Conference, SPACE 2014, Pune, India, October 18–22, 2014. Proceedings, pp. 201–218. Springer, Cham (2014)Google Scholar
  8. 8.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology—ASIACRYPT 2014: 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014, Proceedings, Part II, pp. 326–343. Springer, Berlin (2014)Google Scholar
  9. 9.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc, New York (1995)zbMATHGoogle Scholar
  10. 10.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11–13, 2004. Proceedings, pp. 16–29. Springer, Berlin (2004)Google Scholar
  12. 12.
    Brier, E., Clavier, C., Olivier, F.: Improved template attacks. In: COSADE 2010—First International Workshop on Constructive Side-Channel Analysis and Secure Design (2010)Google Scholar
  13. 13.
    Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic Hardware and Embedded Systems-CHES 2015, pp. 22–41. Springer, Berlin (2015)CrossRefGoogle Scholar
  14. 14.
    Burman, S., Mukhopadhyay, D., Veezhinathan, K.: Lfsr based stream ciphers are vulnerable to power attacks. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) Progress in Cryptology—INDOCRYPT 2007: 8th International Conference on Cryptology in India, Chennai, India, December 9–13, 2007. Proceedings, pp. 384–392. Springer, Berlin (2007)Google Scholar
  15. 15.
    Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for side-channel attacks. In: Homma, N., Medwed, M. (eds.) Smart Card Research and Advanced Applications, pp. 15–33. Springer, Cham (2016)CrossRefGoogle Scholar
  16. 16.
    Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems-CHES 2017: 19th International Conference, Taipei, Taiwan, September 25–28, 2017, Proceedings, pp. 45–68. Springer, Cham (2017)CrossRefGoogle Scholar
  17. 17.
    Chakraborty, A.: Template attack on SPA and FA resistant implementation of montgomery ladder. IET Inf. Secur. 10(6), 245–251 (2016)CrossRefGoogle Scholar
  18. 18.
    Chakraborty, A., Mazumdar, B., Mukhopadhay, D.: Combined side-channel and fault analysis attack on protected grain family of stream ciphers. Cryptology ePrint Archive, Report 2015/602 (2015)Google Scholar
  19. 19.
    Chakraborty, A., Mazumdar, B., Mukhopadhyay, D.: A practical DPA on grain v1 using LS-SVM. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 44–47 (2015)Google Scholar
  20. 20.
    Chakraborty, A., Mukhopadhyay, D.: A practical template attack on mickey-128 2.0 using PSO generated IVS and LS-SVM. In: 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), pp. 529–534 (2016)Google Scholar
  21. 21.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. Cryptographic Hardware and Embedded Systems–CHES 2002: 4th International Workshop Redwood Shores. CA, USA, August 13–15, 2002 Revised Papers, pp. 13–28. Springer, Berlin (2003)Google Scholar
  22. 22.
    Chou, J.W., Chu, M.H., Tsai, Y.L., Jin, Y., Cheng, C.M., Lin, S.D.: An unsupervised learning model to perform side channel attack. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) Advances in Knowledge Discovery and Data Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14–17, 2013, Proceedings, Part I, pp. 414–425. Springer, Berlin (2013)CrossRefGoogle Scholar
  23. 23.
    Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications: 12th International Conference, CARDIS 2013, Berlin, Germany, November 27–29, 2013. Revised Selected Papers, pp. 253–270. Springer, Cham (2014)Google Scholar
  24. 24.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  25. 25.
    Duan, L., Hongxin, Z., Qiang, L., Xinjie, Z., Pengfei, H.: Electromagnetic side-channel attack based on PSO directed acyclic graph SVM. J. China Univ. Posts Telecommun. 22(5), 10–15 (2015)CrossRefGoogle Scholar
  26. 26.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)zbMATHGoogle Scholar
  27. 27.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ’95, pp. 39–43 (1995)Google Scholar
  28. 28.
    Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassembler. Transactions on Computational Science X: Special Issue on Security in Computing, Part I, pp. 78–99. Springer, Berlin (2010)Google Scholar
  29. 29.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997).  https://doi.org/10.1006/jcss.1997.1504 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems-CHES 2001: Third International Workshop Paris, France, May 14–16, 2001 Proceedings, pp. 251–261. Springer, Berlin (2001)CrossRefGoogle Scholar
  31. 31.
    Genkin, D., Shamir, A., Tromer, E.: Acoustic cryptanalysis. J. Cryptol. 30(2), 392–443 (2017)CrossRefzbMATHGoogle Scholar
  32. 32.
    Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order DPA attacks. In: Pieprzyk, J. (ed.) Topics in Cryptology—CT-RSA 2010: The Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA, USA, March 1–5, 2010. Proceedings, pp. 221–234. Springer, Berlin (2010)Google Scholar
  33. 33.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2008: 10th International Workshop, Washington, DC, USA, August 10–13, 2008. Proceedings, pp. 426–442. Springer, Berlin (2008)Google Scholar
  34. 34.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2006: 8th International Workshop, Yokohama, Japan, October 10–13, 2006. Proceedings, pp. 15–29. Springer, Berlin (2006)Google Scholar
  35. 35.
    Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111 (2015)Google Scholar
  36. 36.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  37. 37.
    Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable devices. In: Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2011: 13th International Workshop, Nara, Japan, September 28–October 1, 2011. Proceedings, pp. 33–48. Springer, Berlin (2011)Google Scholar
  38. 38.
    Guntur, H., Ishii, J., Satoh, A.: Side-channel attack user reference architecture board SAKURA-G. In: 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE), pp. 271–274 (2014)Google Scholar
  39. 39.
    Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3–7, 2003. Proceedings, pp. 986–996. Springer, Berlin (2003)Google Scholar
  40. 40.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  41. 41.
    He, H., Jaffe, J., Zou, L.: Side channel cryptanalysis using machine learning. Standford University, CS229 Fall Project (2012)Google Scholar
  42. 42.
    Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight ciphers: does lightweight equal easy? Cryptology ePrint Archive, Report 2017/261. http://eprint.iacr.org/2017/261 (2017). Accessed 19 Mar 2019
  43. 43.
    Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) Constructive Side-Channel Analysis and Secure Design: Third International Workshop, COSADE 2012, Darmstadt, Germany, May 3–4, 2012. Proceedings. Springer, Berlin (2012)Google Scholar
  44. 44.
    Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms for non-profiled single-execution attacks on exponentiations. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications: 12th International Conference, CARDIS 2013, Berlin, Germany, November 27–29, 2013. Revised Selected Papers, pp. 79–93. Springer, Cham (2014)Google Scholar
  45. 45.
    Heyszl, J., Merli, D., Heinz, B., De Santis, F., Sigl, G.: Strengths and limitations of high-resolution electromagnetic field measurements for side-channel analysis. In: Mangard, S. (ed.) Smart Card Research and Advanced Applications: 11th International Conference, CARDIS 2012, Graz, Austria, November 28–30, 2012. Revised Selected Papers, pp. 248–262. Springer, Berlin (2013)Google Scholar
  46. 46.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
  47. 47.
    Hoogvorst, P.: The variance power analysis. In: COSADE 2010—First International Workshop on Constructive Side-Channel Analysis and Secure Design (2010)Google Scholar
  48. 48.
    Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4), 293 (2011)CrossRefGoogle Scholar
  49. 49.
    Hou, S., Zhou, Y., Liu, H., Zhu, N.: Wavelet support vector machine algorithm in power analysis attacks. Radioengineering 26(3), 890–902 (2017)CrossRefGoogle Scholar
  50. 50.
    Huang, J., Zhou, Y., Liu, J.: Measuring the effectiveness of DPA attacks-from the perspective of distinguishers’ statistical characteristics. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 4, pp. 161–168 (2010)Google Scholar
  51. 51.
    Jap, D., Breier, J.: Overview of machine learning based side-channel analysis methods. In: 2014 International Symposium on Integrated Circuits (ISIC), pp. 38–41 (2014)Google Scholar
  52. 52.
    Jap, D., Stöttinger, M., Bhasin, S.: Support vector regression: exploiting machine learning techniques for leakage modeling. In: Proceedings of the Fourth Workshop on Hardware and Architectural Support for Security and Privacy, HASP ’15, pp. 2:1–2:8 (2015)Google Scholar
  53. 53.
    Järvinen, K., Balasch, J.: Single-trace side-channel attacks on scalar multiplications with precomputations. In: Lemke-Rust, K., Tunstall, M. (eds.) Smart Card Research and Advanced Applications: 15th International Conference, CARDIS 2016, Cannes, France, November 7–9, 2016. Revised Selected Papers, pp. 137–155. Springer, Cham (2017)Google Scholar
  54. 54.
    Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Joye, M.: Elliptic curves and side-channel analysis. ST J. Syst. Res. 4, 17–21 (2003)Google Scholar
  56. 56.
    Joye, M., Yen, S.M.: The Montgomery powering ladder. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2002: 4th International Workshop Redwood Shores, CA, USA, August 13–15, 2002. Revised Papers, pp. 291–302. Springer, Berlin (2003)Google Scholar
  57. 57.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR arXiv:1412.6980 (2014)
  58. 58.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Advances in Cryptology–CRYPTO’ 99: 19th Annual International Cryptology Conference Santa Barbara, California, USA, August 15–19, 1999. Proceedings, pp. 388–397. Springer, Berlin (1999)Google Scholar
  59. 59.
    Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis. J. Cryptogr. Eng. 1(1), 5–27 (2011)CrossRefGoogle Scholar
  60. 60.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. Advances in Cryptology–CRYPTO ’96: 16th Annual International Cryptology Conference Santa Barbara. California, USA August 18–22, 1996 Proceedings, pp. 104–113. Springer, Berlin (1996)Google Scholar
  61. 61.
    Koeune, F., Standaert, F.X.: A tutorial on physical security and side-channel attacks. In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) Foundations of Security Analysis and Design III: FOSAD 2004/2005 Tutorial Lectures, pp. 78–108. Springer, Berlin (2005)CrossRefGoogle Scholar
  62. 62.
    Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. In: Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering, pp. 3–24. IOS Press (2007)Google Scholar
  63. 63.
    Langley, P.: Crafting papers on machine learning. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML), pp. 1207–1212 (2000)Google Scholar
  64. 64.
    Lerman, L., Bontempi, G., Ben Taieb, S., Markowitch, O.: A time series approach for profiling attack. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) Security, Privacy, and Applied Cryptography Engineering: Third International Conference, SPACE 2013, Kharagpur, India, October 19–23, 2013. Proceedings, pp. 75–94. Springer, Berlin (2013)Google Scholar
  65. 65.
    Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: COSADE 2011—Second International Workshop on Constructive Side-Channel Analysis and Secure Design (2011)Google Scholar
  66. 66.
    Lerman, L., Bontempi, G., Markowitch, O.: The bias-variance decomposition in profiled attacks. J. Cryptogr. Eng. 5(4), 255–267 (2015). https://doi.org/10.1007/s13389-015-0106-1
  67. 67.
    Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. J. Cryptogr. Eng. 5(2), 123–139 (2015)CrossRefGoogle Scholar
  68. 68.
    Lerman, L., Martinasek, Z., Markowitch, O.: Robust profiled attacks: should the adversary trust the dataset? IET Inf. Secur. 11(4), 188–194 (2017)CrossRefGoogle Scholar
  69. 69.
    Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications: 12th International Conference, CARDIS 2013, Berlin, Germany, November 27–29, 2013. Revised Selected Papers, pp. 61–75. Springer, Berlin (2014)Google Scholar
  70. 70.
    Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markowitch, O.: Semi-supervised template attack. In: Prouff, E. (ed.) Constructive Side-Channel Analysis and Secure Design: 4th International Workshop, COSADE 2013, Paris, France, March 6–8, 2013. Revised Selected Papers. Springer, Berlin (2013)Google Scholar
  71. 71.
    Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) Constructive Side-Channel Analysis and Secure Design: 6th International Workshop, COSADE 2015, Berlin, Germany, April 13–14, 2015. Revised Selected Papers, pp. 20–33. Springer, Cham (2015)Google Scholar
  72. 72.
    Lerman, L., Veshchikov, N., Markowitch, O., Standaert, F.: Start simple and then refine: bias-variance decomposition as a diagnosis tool for leakage profiling. IEEE Trans. Comput. 67(2), 268–283 (2018). https://doi.org/10.1109/TC.2017.2731342
  73. 73.
    Liu, B., Ding, Z., Pan, Y., Li, J., Feng, H.: Side-channel attacks based on collaborative learning. Data Science: Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017, Changsha, China, September 22–24, 2017. Proceedings, Part I, pp. 549–557. Springer, Singapore (2017)Google Scholar
  74. 74.
    Liu, B., Feng, H., Yuan, Z., Gao, Y.: Learning to attack from electromagnetic emanation. In: 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), pp. 202–205 (2012)Google Scholar
  75. 75.
    Liu, J., Zhou, Y., Han, Y., Li, J., Yang, S., Feng, D.: How to characterize side-channel leakages more accurately? In: Bao, F., Weng, J. (eds.) Information Security Practice and Experience: 7th International Conference, ISPEC 2011, Guangzhou, China, May 30–June 1, 2011. Proceedings, pp. 196–207. Springer, Berlin (2011)Google Scholar
  76. 76.
    Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) Security, Privacy, and Applied Cryptography Engineering: 6th International Conference, SPACE 2016, Hyderabad, India, December 14–18, 2016. Proceedings, pp. 3–26. Springer, Cham (2016)Google Scholar
  77. 77.
    Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Combined modeling and side channel attacks on strong PUFs. Cryptology ePrint Archive, Report 2013/632. https://eprint.iacr.org/2013/632 (2013). Accessed 19 Mar 2019
  78. 78.
    Mangard, S.: A simple power-analysis (SPA) attack on implementations of the AES key expansion. In: Lee, P.J., Lim, C.H. (eds.) Information Security and Cryptology—ICISC 2002: 5th International Conference Seoul, Korea, November 28–29, 2002. Revised Papers, pp. 343–358. Springer, Berlin (2003)Google Scholar
  79. 79.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, 1st edn. Springer, New York (2010)zbMATHGoogle Scholar
  80. 80.
    Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on MLP in DPA contest v4.2. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), pp. 223–226 (2016)Google Scholar
  81. 81.
    Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications: 12th International Conference, CARDIS 2013, Berlin, Germany, November 27–29, 2013. Revised Selected Papers, pp. 94–107. Springer, Cham (2014)Google Scholar
  82. 82.
    Martinasek, Z., Malina, L.: Comparison of profiling power analysis attacks using templates and multi-layer perceptron network. Math. Methods Sci. Eng. (2014)Google Scholar
  83. 83.
    Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis attack based on multi-layer perceptron network. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering, pp. 317–339. Springer, Cham (2015)CrossRefGoogle Scholar
  84. 84.
    Martinasek, Z., Zeman, V., Malina, L., Martinasek, J.: k-Nearest neighbors algorithm in profiling power analysis attacks. Radioengineering 25(2), 365–382 (2016)CrossRefGoogle Scholar
  85. 85.
    Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning—ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14–17, 2011. Proceedings, Part I, pp. 52–59. Springer, Berlin (2011)Google Scholar
  86. 86.
    Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc, New York (1997)zbMATHGoogle Scholar
  87. 87.
    Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)zbMATHGoogle Scholar
  88. 88.
    Murthy, S.K.: Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min. Knowl. Discov. 2(4), 345–389 (1998)CrossRefGoogle Scholar
  89. 89.
    Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: 2012 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1173–1178 (2012)Google Scholar
  90. 90.
    Okeya, K., Takagi, T.: The width-w NAF method provides small memory and fast elliptic scalar multiplications secure against side channel attacks. In: Joye, M. (ed.) Topics in Cryptology—CT-RSA 2003: The Cryptographers’ Track at the RSA Conference 2003 San Francisco, CA, USA, April 13–17, 2003. Proceedings, pp. 328–343. Springer, Berlin (2003)Google Scholar
  91. 91.
    O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR arXiv:1511.08458 (2015)
  92. 92.
    Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear transforms. In: Mangard, S. (ed.) Smart Card Research and Advanced Applications: 11th International Conference, CARDIS 2012, Graz, Austria, November 28–30, 2012. Revised Selected Papers, pp. 219–233. Springer, Berlin (2013)Google Scholar
  93. 93.
    Özgen, E., Papachristodoulou, L., Batina, L.: Template attacks using classification algorithms. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 242–247 (2016)Google Scholar
  94. 94.
    Perin, G., Imbert, L., Torres, L., Maurine, P.: Attacking randomized exponentiations using unsupervised learning. In: Prouff, E. (ed.) Constructive Side-Channel Analysis and Secure Design: 5th International Workshop, COSADE 2014, Paris, France, April 13–15, 2014. Revised Selected Papers, pp. 144–160. Springer, Cham (2014)Google Scholar
  95. 95.
    Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. J. Cryptogr. Eng. 7(4), 343–351 (2017)CrossRefGoogle Scholar
  96. 96.
    Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted attacker framework. Cryptology ePrint Archive, Report 2019/168. https://eprint.iacr.org/2019/168 (2019). Accessed 19 Mar 2019
  97. 97.
    Picek, S., Heuser, A., Jovic, A., Legay, A.: Climbing down the hierarchy: hierarchical classification for machine learning side-channel attacks. In: Joye, M., Nitaj, A. (eds.) Progress in Cryptology—AFRICACRYPT 2017: 9th International Conference on Cryptology in Africa, Dakar, Senegal, May 24–26, 2017. Proceedings, pp. 61–78. Springer, Cham (2017)Google Scholar
  98. 98.
    Picek, S., Heuser, A., Jovic, A., Legay, A.: On the relevance of feature selection for profiled side-channel attacks. Cryptology ePrint Archive, Report 2017/1110. https://eprint.iacr.org/2017/1110 (2017). Accessed 19 Mar 2019
  99. 99.
    Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley, S., Jakobovic, D., Mentens, N.: Side-channel analysis and machine learning: A practical perspective. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4095–4102 (2017)Google Scholar
  100. 100.
    Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)Google Scholar
  101. 101.
    Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Cryptology ePrint Archive, Report 2018/053. https://eprint.iacr.org/2018/053 (2018). Accessed 19 Mar 2019
  102. 102.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  103. 103.
    Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-measures for smart cards. Smart Card Programming and Security: International Conference on Research in Smart Cards, E-smart 2001 Cannes, France, September 19–21, 2001. Proceedings, pp. 200–210. Springer, Berlin (2001)Google Scholar
  104. 104.
    Raschka, S.: Linear discriminant analysis: bit by bit. https://sebastianraschka.com/Articles/\(\backslash \)2014_python_lda.html. Accessed 27 Oct 2018Google Scholar
  105. 105.
    Renauld, M., Standaert, F.X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Information Security and Cryptology: 5th International Conference, Inscrypt 2009, Beijing, China, December 12–15, 2009. Revised Selected Papers, pp. 393–410. Springer, Berlin (2010)Google Scholar
  106. 106.
    Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)CrossRefGoogle Scholar
  107. 107.
    Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS ’10, pp. 237–249. ACM (2010)Google Scholar
  108. 108.
    Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F., Burleson, W.: Efficient power and timing side channels for physical unclonable functions. In: Batina, L., Robshaw, M. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2014: 16th International Workshop, Busan, South Korea, September 23–26, 2014. Proceedings, pp. 476–492. Springer, Berlin (2014)Google Scholar
  109. 109.
    Saeedi, E., Hossain, M.S., Kong, Y.: Multi-class SVMs analysis of side-channel information of elliptic curve cryptosystem. In: Proceedings of the International Symposium on Performance Evaluation of Computer and Telecommunication Systems, Spects ’15, pp. 1–6. Society for Computer Simulation International, San Diego (2015)Google Scholar
  110. 110.
    Saeedi, E., Hossain, M.S., Kong, Y.: Side-channel information characterisation based on cascade-forward back-propagation neural network. J. Electron. Test. 32(3), 345–356 (2016)CrossRefGoogle Scholar
  111. 111.
    Saeedi, E., Kong, Y.: Side channel information analysis based on machine learning. In: 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–7 (2014)Google Scholar
  112. 112.
    Saeedi, E., Kong, Y., Hossain, M.S.: Side-channel attacks and learning-vector quantization. Front. Inf. Technol. Electron. Eng. 18(4), 511–518 (2017)CrossRefGoogle Scholar
  113. 113.
    Saravanan, P., Kalpana, P.: A novel approach to attack smartcards using machine learning method. J. Sci. Ind. Res. (JSIR) 76, 95–99 (2017)Google Scholar
  114. 114.
    Saravanan, P., Kalpana, P., Preethisri, V., Sneha, V.: Power analysis attack using neural networks with wavelet transform as pre-processor. In: 18th International Symposium on VLSI Design and Test, pp. 1–6 (2014)Google Scholar
  115. 115.
    Sasdrich, P., Moradi, A., Mischke, O., Güneysu, T.: Achieving side-channel protection with dynamic logic reconfiguration on modern FPGAs. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 130–136 (2015). https://doi.org/10.1109/HST.2015.7140251
  116. 116.
    Schetinin, V.: An evolving cascade neural network technique for cleaning sleep electroencephalograms. CoRR arXiv:cs/0504067 (2005)
  117. 117.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2005: 7th International Workshop, Edinburgh, UK, August 29–September 1, 2005. Proceedings, pp. 30–46. Springer, Berlin (2005)Google Scholar
  118. 118.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  119. 119.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR arXiv:1409.1556 (2014)
  120. 120.
    Specht, R., Heyszl, J., Kleinsteuber, M., Sigl, G.: Improving non-profiled attacks on exponentiations based on clustering and extracting leakage from multi-channel high-resolution EM measurements. In: Mangard, S., Poschmann, A.Y. (eds.) Constructive Side-Channel Analysis and Secure Design: 6th International Workshop, COSADE 2015, Berlin, Germany, April 13–14, 2015. Revised Selected Papers, pp. 3–19. Springer, Cham (2015)Google Scholar
  121. 121.
    Standaert, F.X., Archambeau, C.: Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. In: Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems-CHES 2008, pp. 411–425. Springer, Berlin (2008)CrossRefGoogle Scholar
  122. 122.
    Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-channel distinguishers: an empirical evaluation of statistical tests for univariate side-channel attacks against two unprotected CMOs devices. In: Lee, P.J., Cheon, J.H. (eds.) Information Security and Cryptology—ICISC 2008: 11th International Conference, Seoul, Korea, December 3–5, 2008. Revised Selected Papers, pp. 253–267. Springer, Berlin (2009)Google Scholar
  123. 123.
    Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology—EUROCRYPT 2009: 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26–30, 2009. Proceedings. Springer, Berlin (2009)Google Scholar
  124. 124.
    Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010). https://doi.org/10.1587/elex.7.1139
  125. 125.
    TELECOM ParisTech SEN research group: DPA Contest v1. http://www.dpacontest.org/index.php. Accessed 19 Mar 2019
  126. 126.
    TELECOM ParisTech SEN research group: DPA Contest v2. http://www.dpacontest.org/v2/. Accessed 19 Mar 2019
  127. 127.
    TELECOM ParisTech SEN research group: DPA Contest v4. http://www.dpacontest.org/v4/index.php. Accessed 19 Mar 2019
  128. 128.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press Inc, Orlando (2008)zbMATHGoogle Scholar
  129. 129.
    Thillard, A., Prouff, E., Roche, T.: Success through confidence: evaluating the effectiveness of a side-channel attack. In: Bertoni, G., Coron, J.S. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2013: 15th International Workshop, Santa Barbara, CA, USA, August 20–23, 2013. Proceedings, pp. 21–36. Springer, Berlin (2013)Google Scholar
  130. 130.
    Timon, B.: Non-profiled deep learning-based side-channel attacks. Cryptology ePrint Archive, Report 2018/196. https://eprint.iacr.org/2018/196 (2018)
  131. 131.
    van Gestel, T., Suykens, J.A., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., de Moor, B., Vandewalle, J.: Benchmarking least squares support vector machine classifiers. Mach. Learn. 54(1), 5–32 (2004)CrossRefzbMATHGoogle Scholar
  132. 132.
    Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive Bayes: aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)CrossRefzbMATHGoogle Scholar
  133. 133.
    Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2015: 17th International Workshop, Saint-Malo, France, September 13–16, 2015. Proceedings, pp. 3–21. Springer, Berlin (2015)Google Scholar
  134. 134.
    Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov–Smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) Smart Card Research and Advanced Applications, pp. 234–251. Springer, Berlin (2011)CrossRefGoogle Scholar
  135. 135.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  136. 136.
    Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based leakage characterization for practical security analysis of cryptographic implementations. In: Kim, H. (ed.) Information Security and Cryptology—ICISC 2011: 14th International Conference, Seoul, Korea, November 30–December 2, 2011. Revised Selected Papers, pp. 169–185. Springer, Berlin (2012)Google Scholar
  137. 137.
    Zadeh, A.A., Heys, H.M.: Simple power analysis applied to nonlinear feedback shift registers. IET Inf. Secur. 8(3), 188–198 (2014)CrossRefGoogle Scholar
  138. 138.
    Zdenek, M., Zeman, V.: Innovative method of the power analysis. Radioengineering 22(2), 586–594 (2013)Google Scholar
  139. 139.
    Zeng, Z., Gu, D., Liu, J., Guo, Z.: An improved side-channel attack based on support vector machine. In: 2014 Tenth International Conference on Computational Intelligence and Security, pp. 676–680 (2014)Google Scholar
  140. 140.
    Zhang, H., Han, G., Li, J.: Wavelet transform-principal component analysis in electromagnetic attack. In: 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), pp. 420–423 (2015)Google Scholar
  141. 141.
    Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to compare selections of points of interest for side-channel distinguishers in practice? In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) Information and Communications Security: 16th International Conference, ICICS 2014, Hong Kong, China, December 16–17, 2014. Revised Selected Papers, pp. 200–214. Springer, Cham (2015)Google Scholar
  142. 142.
    Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM Trans. Inf. Syst. Secur. 13(1), 3:1–3:26 (2009)Google Scholar
  143. 143.
    Zohner, M., Kasper, M., Stöttinger, M., Huss, S.A.: Side channel analysis of the SHA-3 finalists. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’12, pp. 1012–1017. EDA Consortium, San Jose (2012)Google Scholar
  144. 144.
    Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. ArXiv e-prints (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Corporate Sector ResearchRobert Bosch GmbHStuttgartGermany
  2. 2.Horst Görtz Institute for IT-SecurityRuhr University BochumBochumGermany

Personalised recommendations