Fast unified elliptic curve point multiplication for NIST prime curves on FPGAs

  • Tao WuEmail author
  • Ruomei Wang
Short Communication


Elliptic curve cryptography has been widely used in public key cryptography, which applies shorter keys to achieve the same security level of RSA cryptosystems. This communication advances a fast unified hardware architecture for elliptic curve point multiplication over NIST primes. The improvements of this work include word-based modular division, parallel point additions and doublings, and pipelined scalable multiplications and modular reductions. The hardware integrates computation for five NIST curves and can compute one time of NIST-192/224/256/384/521 elliptic curve point multiplication in 0.437/0.574/0.776/1.57/2.74 ms with Xilinx Virtex IV device, costing an area of 21,638 slices, 32 DSPs and 26 kbits of RAMs, which outperforms most results as far as we know.


Elliptic curve cryptography Montgomery ladder Scalable multiplication 



The author would like to thank the comments of editors and reviewers. This work is partly supported by Shenzhen postdoctoral financial aid, and Guangdong engineering research center for healthy living.


  1. 1.
    Alrimeih, H., Rakhmatov, D.: Fast and flexible hardware support for ECC over multiple standard prime fields. IEEE Trans. VLSI Syst. 22(12), 2661–2674 (2014)CrossRefGoogle Scholar
  2. 2.
    Amiet, D., Curiger, A., Zbinden, P.: Flexible FPGA-based architectures for curve point multiplication over \({GF}(p)\). In: Euromicro Conference on Digital System Design, pp. 107–114 (2016)Google Scholar
  3. 3.
    Ananyi, K., Alrimeih, H., Rakhmatov, D.: Flexible hardware processor for elliptic curve cryptography over NIST prime fields. IEEE Trans. Very Large Scale Integr. Syst. 17(8), 1099–1112 (2009)CrossRefGoogle Scholar
  4. 4.
    Bajard, J., Duquenne, S., Meloni, N.: Combining montgomery ladder for elliptic curves defined over \(F_p\) and RNS representation. Tech. rep., LIRMM (2006)Google Scholar
  5. 5.
    Bigou, K., Tisserand, A.: Improving modular inversion in RNS using the plus-minus method. In: CHES. LNCS, vol. 8086, pp. 233–249 (2013)Google Scholar
  6. 6.
    Bigou, K., Tisserand, A.: Binary-ternary plus–minus modular inversion in rns. IEEE Trans. Comput. 65(11), 3495–3501 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, G., Bai, G., Chen, H.: A new systolic architecture for modular division. IEEE Trans. Comput. 56(2), 282–286 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chung, S.C., Lee, J.W., Chang, H.C., Lee, C.Y.: A high-performance elliptic curve cryptographic processor over \(gf(p)\) with \(spa\) resistance. In: IEEE International Symposium on Circuits and Systems, pp. 1456–1459 (2012)Google Scholar
  9. 9.
    Esmaeildoust, M., Schinianakis, D., Javashi, H., Stouraitis, T., Navi, K.: Efficient RNS implementation of elliptic curve point multiplication over \({GF}(p)\). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(8), 1545–1549 (2013)CrossRefGoogle Scholar
  10. 10.
    Feng, X., Li, S.: A high-speed and SPA-resistant implementation of ECC point multiplication over \(GF(p)\). In: IEEE Trustcom/BigDataSE/ICESS, pp. 255–260 (2017)Google Scholar
  11. 11.
    Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications over \(F_p\). In: International Workshop on Cryptographic Hardware and Embedded Software. LNCS, vol. 6225, pp. 48–64 (2010)Google Scholar
  12. 12.
    Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on commercial FPGAs. In: Workshop on Cryptographic Hardware and Embedded Systems (CHES). LNCS, vol. 5154, pp. 62–78. Springer (2008)Google Scholar
  13. 13.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)zbMATHGoogle Scholar
  14. 14.
    Jeong, Y.J., Burleson, W.P.: VLSI array algorithms and architectures for RSA modular multiplication. IEEE Trans. Very Large Scale Integr. Syst. 5(2), 211–217 (1997)CrossRefGoogle Scholar
  15. 15.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Loi, K.C.C., Ko, S.B.: Scalable elliptic curve cryptosystem FPGA processor for nist prime curves. IEEE Trans. VLSI Syst. 23(11), 2753–2756 (2015)CrossRefGoogle Scholar
  17. 17.
    Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic processor for generic curves over \({\rm GF} (p)\). In: International Conference on Selected Areas in Cryptography, pp. 421–437. Springer, Berlin, Heidelberg (2013)Google Scholar
  18. 18.
    Mahdizadeh, H., Masoumi, M.: Novel architecture for efficient FPGA implementation of elliptic curve cryptographic processor over \(gf(2^{163})\). IEEE Trans. VLSI Syst. 21(12), 2330–2333 (2013)CrossRefGoogle Scholar
  19. 19.
    Marzouqi, H., Al-Qutayri, M., Salah, K., Schinianakis, D., Stouraitis, T.: A high-speed FPGA implementation of an RSD-based ECC processor. IEEE Trans. VLSI Syst. 24(1), 151–164 (2016)CrossRefGoogle Scholar
  20. 20.
    Miller, V.: Use of elliptic curves in cryptography. In: Advances in Cryptology–CRYPTO’85. LNCS, vol. 218, pp. 417–426 (1986)Google Scholar
  21. 21.
    Montgomery, P.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 243–264 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rafferty, C., O’Neill, M., Hanley, N.: Evaluation of large integer multiplication methods on hardware. IEEE Trans. Comput. 66(8), 1369–1382 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Silverman, J.H.: A Friendly Introduction to Number Theory, 3rd edn. China Machine Press, Beijing (2006)Google Scholar
  24. 24.
    Takagi, N.: A VLSI algorithm for modular division based on the binary GCD algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E81–A(5), 724–728 (1998)Google Scholar
  25. 25.
    Tenca, A., KoÇ, Ç.: Scalable architecture for Montgomery multiplication. In: KoÇ Ç., Paar C. (eds.) First International Workshop on Cryptographic Hardware and Embedded Systems (CHES’99), pp. 94–108 (1999)Google Scholar
  26. 26.
    Wu, T.: Elliptic curve \(GF(p)\) point multiplier by dual arithmetic cores. In: IEEE International Conference on ASIC, pp. 519–522 (2015)Google Scholar
  27. 27.
    Wu, T., Li, S., Litian-Liu: Modular multiplier by folding Barrett modular reduction. In: IEEE 11th International Conference on Solid-State and Integrated Circuit Technology(ICSICT), pp. 1–3 (2012)Google Scholar
  28. 28.
    Wu, T., Li, S., Liu, L.: Fast RSA decryption through high-radix scalable montgomery modular multipliers. Sci. China Inf. Sci. 58(6), 062401 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shenzhen Research Institute by Sun Yat-Sen UniversityShenzhenPeople’s Republic of China
  2. 2.School of Data and Computer Science of Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations