Advertisement

Mixed-radix Naccache–Stern encryption

  • Rémi Géraud
  • David Naccache
Regular Paper
  • 18 Downloads

Abstract

In this work, we explore a combinatorial optimization problem stemming from the Naccache–Stern cryptosystem. We show that solving this problem results in bandwidth improvements, and suggest a polynomial-time approximation algorithm to find an optimal solution. Our work suggests that using optimal radix encoding results in an asymptotic 50% increase in bandwidth.

Keywords

Non-linear optimization Public-key encryption Geometric algorithm Naccache–Stern cryptosystem Numeration systems 

References

  1. 1.
    Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) Advances in Cryptology—EUROCRYPT’97, Lecture Notes in Computer Science, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Adleman, L.M.: On breaking the iterated Merkle–Hellman public-key cryptosystem. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology—CRYPTO’82, pp. 303–308. Plenum Press, New York (1982)Google Scholar
  3. 3.
    Brickell, E.F.: Breaking iterated Knapsacks. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology—CRYPTO’84, Lecture Notes in Computer Science, vol. 196, pp. 342–358. Springer, Heidelberg (1984)Google Scholar
  4. 4.
    Joux, A., Stern, J.: Cryptanalysis of another Knapsack cryptosystem. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) Advances in Cryptology—ASIACRYPT’91, Lecture Notes in Computer Science, vol. 739, pp. 470–476. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Chee, Y.M., Joux, A., Stern, J.: The cryptoanalysis of a new public-key cryptosystem based on modular Knapsacks. In: Feigenbaum, J. (ed.) Advances in Cryptology—CRYPTO’91, Lecture Notes in Computer Science, vol. 576, pp. 204–212. Springer, Heidelberg (1992)Google Scholar
  6. 6.
    Lenstra Jr., H.W.: On the Chor–Rivest knapsack cryptosystem. J. Cryptol. 3(3), 149–155 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Herold, G., Meurer, A.: New attacks for knapsack based cryptosystems. In: Visconti, I., Prisco, R.D. (eds.) SCN 12: 8th International Conference on Security in Communication Networks, Lecture Notes in Computer Science, vol. 7485, pp. 326–342. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Chevallier-Mames, B., Naccache, D., Stern, J.: Linear bandwidth Naccache–Stern encryption. In: Ostrovsky, R., Prisco, R.D., Visconti, I. (eds.) SCN 08: 6th International Conference on Security in Communication Networks, Lecture Notes in Computer Science, vol. 5229, pp. 327–339. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Brier, É., Géraud, R., Naccache, D.: Exploring Naccache–Stern knapsack encryption. In: P. Farshim, E. Simion (eds.) Innovative Security Solutions for Information Technology and Communications—10th International Conference, SecITC 2017, Bucharest, Romania, June 8–9, 2017, Revised Selected Papers, Lecture Notes in Computer Science, vol. 10543, pp. 67–82. Springer (2017).  https://doi.org/10.1007/978-3-319-69284-5_6
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  11. 11.
    De Loera, J.A., Hemmecke, R., Köppe, M., Weismantel, R.: Integer polynomial optimization in fixed dimension. Math. Oper. Res. 31(1), 147–153 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Barvinok, A.I., Pommersheim, J.E.: An algorithmic theory of lattice points. New Perspect. Algebr. Combin. 38, 91 (1999)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Information Security Group, Département d’informatique de l’ÉNS, École Normale Supérieure, CNRSPSL Research UniversityParisFrance

Personalised recommendations