Journal of Cryptographic Engineering

, Volume 6, Issue 3, pp 187–199

Inversion-free arithmetic on elliptic curves through isomorphisms

Regular Paper

Abstract

This paper presents inversion-free formulas for the efficient implementation of a scalar multiplication over elliptic curves. Specifically, it proposes to make use of curve isomorphisms as a way to avoid the computation of inverses in point addition formulas. Interestingly, the presented techniques are independent of the model used to represent the elliptic curve and of the coordinate system used to represent the points. In particular, they apply to affine representations. Further, whereas certain inversion-free techniques are mostly limited to specific scalar multiplication algorithms, the proposed techniques apply to all scalar multiplication algorithms. The so-obtained formulas are well suited to embedded systems and can easily be combined with existing countermeasures to provide secure implementations.

Keywords

Elliptic curves Scalar multiplication Isomorphisms Affine coordinates 

References

  1. 1.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) Progress in Cryptology–AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.org/EFD/
  3. 3.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) Advances in Cryptology– ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Adv. Appl. Math. 7(4), 385–434 (1986)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cohen, H.: Analysis of the sliding window powering algorithm. J. Cryptol. 18(1), 63–76 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)Google Scholar
  7. 7.
    De Win, E., Mister, S., Preneel, B., Wiener, M.J.: On the performance of signature schemes based on elliptic curves. In: Buhler, J. (ed.) Algorithmic Number Theory (ANTS-III). LNCS, vol. 1423, pp. 252–266. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Fips, P.U.B. 186–3: Digital signature standard (DSS). Federal Information Processing Standards Publication (2009)Google Scholar
  9. 9.
    Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1), 129–146 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goundar, R.R., Joye, M., Miyaji, A.: Co-\(Z\) addition formulæ and binary ladders on elliptic curves. In: Mangard, S., Standaert, F.-X. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2010. LNCS, vol. 6225, pp. 65–79. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication on Weierstraß elliptic curves from co-\(Z\) arithmetic. J. Cryptogr. Eng. 1(2), 161–176 (2011)CrossRefGoogle Scholar
  12. 12.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)MATHGoogle Scholar
  13. 13.
    Hisil, H., Costello, C.: Jacobian coordinates on genus 2 curves. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology–ASIACRYPT 2014. LNCS, vol. 8873, pp. 338–357. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Hışıl, H., Wong, K.K.H., Carter, G., Dawson, E.: Twisted Edwards curves revisited. In: Pieprzyk, J. (ed.) Advances in Cryptology–ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    IEEE Std P1363-2000: Standard specifications for public key cryptography. IEEE Computer Society (2000)Google Scholar
  16. 16.
    Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Systems–CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Springer, Heidelberg (2012)MATHGoogle Scholar
  18. 18.
    Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve cryptography: An algebraic approach. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems–CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol. 2, 3rd edn. Addison-Wesley, Boston (1997)MATHGoogle Scholar
  20. 20.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)Google Scholar
  21. 21.
    Longa, P., Gebotys, C.H.: Efficient techniques for high-speed elliptic curve cryptography. In: Mangard, S., Standaert, F.-X. (eds.) Cryptographic Hardware and Embedded Systems–CHES 2010. LNCS, vol. 6225, pp. 80–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Longa, P., Miri, A.: New composite operations and precomputation for elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) Public Key Cryptography–PKC 2008. LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg (2007)MATHGoogle Scholar
  24. 24.
    Meloni, N.: New point addition formulæ for ECC applications. In: Carlet, C., Sunar, B. (eds.) Arithmetic of Finite Fields (WAIFI 2007). LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Boston (1993)CrossRefMATHGoogle Scholar
  26. 26.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Advances in Cryptology–CRYPTO ’85. LNCS, vol. 218, pp. 417–426. Springer, Berlin (1985)Google Scholar
  27. 27.
    Möller, B.: Securing elliptic curve point multiplication against side-channel attacks. In: Information Security (ISC 2001). LNCS, vol. 2200, pp. 324–334. Springer (2001)Google Scholar
  28. 28.
    Montgomery, P.L.: Speeding up the Pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 243–264 (1987)CrossRefMATHGoogle Scholar
  29. 29.
    Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO Theor. Inform. Appl. 24(6), 531–543 (1990)MathSciNetMATHGoogle Scholar
  30. 30.
    NSA names ECC as the exclusive technology for key agreement and digital signature standards for the U.S. government. Press release (2 March 2005), announced on February 16, 2005 at the RSA conferenceGoogle Scholar
  31. 31.
    Okeya, K., Takagi, T.: The width-\(w\) NAF method provides small memory and fast elliptic scalar multiplications secure against side channel attacks. In: Joye, M. (ed.) Topics in Cryptology–CT-RSA 2003. LNCS, vol. 2612, pp. 328–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Reitwiesner, G.W.: Binary arithmetic. Adv. Comput. 1, 231–308 (1960)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Rivain, M.: Fast and regular algorithms for scalar multiplication over elliptic curves. Cryptology ePrint Archive, Report 2011/338, http://eprint.iacr.org/ (2011)
  34. 34.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, New York (1986)CrossRefMATHGoogle Scholar
  35. 35.
    Stam, M.: On Montgomery-like representations for elliptic curves over \({\rm GF}(2^k)\). In: Desmedt, Y. (ed.) Public Key Cryptography–PKC 2003. LNCS, vol. 2567, pp. 240–253. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  36. 36.
    Tunstall, M., Joye, M.: Coordinate blinding over large prime fields. In: Mangard, S., Standaert, F.-X. (eds.) Cryptographic Hardware and Embedded Systems–CHES 2010. LNCS, vol. 6225, pp. 443–455. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ColebeeAustralia
  2. 2.TechnicolorLos AltosUSA

Personalised recommendations