Journal of Cryptographic Engineering

, Volume 5, Issue 2, pp 123–139 | Cite as

A machine learning approach against a masked AES

Reaching the limit of side-channel attacks with a learning model
  • Liran Lerman
  • Gianluca Bontempi
  • Olivier Markowitch
Regular Paper

Abstract

Side-channel attacks challenge the security of cryptographic devices. A widespread countermeasure against these attacks is the masking approach. Masking combines sensitive variables with secret random values to reduce its leakage. In 2012, Nassar et al. (DATE, pp 1173–1178. IEEE, 2012) presented a new lightweight (low-cost) boolean masking countermeasure to protect the implementation of the Advanced Encryption Standard (AES) block-cipher. This masking scheme represents the target algorithm of the DPAContest V4 (http://www.dpacontest.org/home/, 2013). In this paper, we present the first machine learning attack against a specific masking countermeasure (more precisely the low-entropy boolean masking countermeasure of Nassar et al.), using the dataset of the DPAContest V4. We succeeded to extract each targeted byte of the key of the masked AES with \(7.8\) traces during the attacking phase with a strategy based solely on machine learning models. Finally, we compared our proposal with (1) a stochastic attack, (2) a strategy based on template attack and (3) a multivariate regression attack. We show that an attack based on a machine learning model reduces significantly the number of traces required during the attacking step compared to these profiling attacks when analyzing the same leakage information.

Keywords

Side-channel attack Masking Profiled attack Machine learning Stochastic attack Template attack 

References

  1. 1.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES. LNCS, vol. 2162, pp. 309–318. Springer, Berlin (2001)Google Scholar
  2. 2.
    Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic multi-class support vector machines. In: Mangard, S. (ed.) CARDIS. LNCS, vol. 7771, pp. 263–276. Springer, Berlin (2012)Google Scholar
  3. 3.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO. LNCS, vol. 1666, pp. 398–412. Springer, Berlin (1999)Google Scholar
  5. 5.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES. LNCS, vol. 2523, pp. 13–28. Springer, Berlin (2002)Google Scholar
  6. 6.
    Coron, J.-S., Naccache, D., Kocher, P.: Statistics and secret leakage. ACM Trans. Embed. Comput. Syst. 3, 492–508 (2004)CrossRefGoogle Scholar
  7. 7.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATHGoogle Scholar
  8. 8.
    Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(1–4), 131–156 (1997)CrossRefGoogle Scholar
  9. 9.
    Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Misc functions of the Department of Statistics (e1071), TU Wien. R package version 1.6 (2011)Google Scholar
  10. 10.
    Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)CrossRefGoogle Scholar
  11. 11.
    DPAContest V4. http://www.dpacontest.org/home/ (2014). Accessed 1 Feb 2014
  12. 12.
    Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT. LNCS, vol. 8441, pp. 459–476. Springer, Berlin (2014)Google Scholar
  13. 13.
    Gonzalez Estrada, E., Villasenor Alva, J.A.: mvShapiroTest: generalized Shapiro–Wilk test for multivariate normality. R package version 0.0.1 (2009)Google Scholar
  14. 14.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES. LNCS, vol. 2162, pp. 251–261. Springer, Berlin (2001)Google Scholar
  15. 15.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis—a generic side-channel distinguisher. In: CHES. LNCS, vol. 5154, pp. 426–442. Springer, Berlin (2008)Google Scholar
  16. 16.
    Gierlichs, B., Janussen, K.: Template attacks on masking: an interpretation. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC (2007)Google Scholar
  17. 17.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Proceedings of the 8th International Conference on Cryptographic Hardware and Embedded Systems. LNCS, vol. 4249, pp. 15–29. Springer, Berlin (2006)Google Scholar
  18. 18.
    Golic, J.Dj., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES. LNCS, vol. 2523, pp. 198–212. Springer, Berlin (2002)Google Scholar
  19. 19.
    Hajra, S., Mukhopadhyay, D.: SNR to success rate: reaching the limit of non-profiling DPA. Cryptology ePrint Archive, Report 2013/865 (2013). http://eprint.iacr.org/
  20. 20.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. 21.
    Heuser, A., Zohner, M.: Intelligent machine homicide—breaking cryptographic devices using support vector machines. In: Proceedings of the Third International Conference on Constructive Side-Channel Analysis and Secure Design. LNCS, vol. 7275, pp. 249–264. Springer, Berlin (2012)Google Scholar
  22. 22.
    Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4), 293–302 (2011)CrossRefGoogle Scholar
  23. 23.
    Hospodar, G., Mulder, E.D., Gierlichs, B., Vandewalle, J., Verbauwhede, I.: Least squares support vector machines for side-channel analysis. In: Second International Workshop on Constructive SideChannel Analysis and Secure Design, pp. 99–104. Center for Advanced Security Research, Darmstadt (2011)Google Scholar
  24. 24.
    Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. J. 6(5), 429–449 (2002)MATHGoogle Scholar
  25. 25.
    Kocher, P.C.: Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO. LNCS, vol. 1109, pp. 104–113. Springer, Berlin (1996)Google Scholar
  26. 26.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO. LNCS, pp. 388–397. Springer, Berlin (1999)Google Scholar
  27. 27.
    Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: Second International Workshop on Constructive SideChannel Analysis and Secure Design, pp. 29–41. Center for Advanced Security Research, Darmstadt (2011)Google Scholar
  28. 28.
    Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. Int. J. Appl. Cryptogr. 3(2), 97–115 (2014)CrossRefMATHGoogle Scholar
  29. 29.
    Lerman, L., Bontempi, G., Ben Taieb, S., Markowitch, O.: A time series approach for profiling attack. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE. LNCS, vol. 8204, pp. 75–94. Springer, Berlin (2013)Google Scholar
  30. 30.
    Lerman, L., Fernandes Medeiros, S., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) International Conference on Smart Card Research and Advanced Applications (CARDIS). LNCS. Springer, Berlin (2013)Google Scholar
  31. 31.
    Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)Google Scholar
  32. 32.
    Lomné, V., Prouff, E., Roche, T.: Behind the scene of side channel attacks. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT. LNCS, vol. 8269, pp. 506–525. Springer, Berlin (2013)Google Scholar
  33. 33.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks—Revealing the Secrets of Smart Cards. Springer, Berlin (2007)MATHGoogle Scholar
  34. 34.
    Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57(3), 519–530 (1970)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengineering 22(2), 586–594 (2013)Google Scholar
  36. 36.
    Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE. LNCS, vol. 1978, pp. 150–164. Springer, Berlin (2001)Google Scholar
  37. 37.
    Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.: Improving cross-device attacks using zero-mean unit-variance normalization. J. Cryptogr. Eng. 3(2), 99–110 (2013)CrossRefGoogle Scholar
  38. 38.
    Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. Cryptology ePrint Archive, Report 2013/842 (2013). http://eprint.iacr.org/
  39. 39.
    Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp. 1173–1178. IEEE (2012)Google Scholar
  40. 40.
    Oswald, E., Mangard, S.: Template attacks on masking-resistance is futile. In: Abe, M. (ed.) Topics in Cryptology—CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Berlin (2006)CrossRefGoogle Scholar
  41. 41.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)CrossRefGoogle Scholar
  42. 42.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  43. 43.
    Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) Fast Software Encryption. LNCS, vol. 3557, pp. 424–441. Springer, Berlin (2005)CrossRefGoogle Scholar
  44. 44.
    Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably secure against second order side channel analysis. In: Nyberg, K. (ed.) FSE. LNCS, vol. 5086, pp. 127–143. Springer, Berlin (2008)Google Scholar
  45. 45.
    Schindler, W.: Advanced stochastic methods in side channel analysis on block ciphers in the presence of masking. J. Math. Cryptol. 2(3), 291–310 (2008)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES. LNCS, vol. 3659, pp. 30–46. Springer, Berlin (2005)Google Scholar
  47. 47.
    Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES. LNCS, vol. 5154, pp. 411–425. Springer, Berlin (2008)Google Scholar
  48. 48.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The world is not enough: another look on second-order DPA. In: Abe, M. (ed.) ASIACRYPT. LNCS, vol. 6477, pp. 112–129. Springer, Berlin (2010)Google Scholar
  49. 49.
    Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010)CrossRefGoogle Scholar
  50. 50.
    von Willich, M.: A technique with an information-theoretic basis for protecting secret data from differential power attacks. In: Honary, B. (ed.) IMA International Conference. LNCS, vol. 2260, pp. 44–62. Springer, Berlin (2001)Google Scholar
  51. 51.
    Whitnall, C., Oswald, E.: Profiling DPA: efficacy and efficiency trade-offs. In: Bertoni, G., Coron, J.-S. (eds.) CHES. LNCS, vol. 8086, pp. 37–54. Springer, Berlin (2013)Google Scholar
  52. 52.
    Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov–Smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS. LNCS, vol. 7079, pp. 234–251. Springer, Berlin (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Liran Lerman
    • 1
    • 2
  • Gianluca Bontempi
    • 2
  • Olivier Markowitch
    • 1
  1. 1.Quality and Security of Information Systems, Département d’informatiqueUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Machine Learning Group, Département d’informatiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations