Journal of Cryptographic Engineering

, Volume 4, Issue 2, pp 107–121 | Cite as

Achieving side-channel high-order correlation immunity with leakage squeezing

  • Claude Carlet
  • Jean-Luc Danger
  • Sylvain Guilley
  • Houssem Maghrebi
  • Emmanuel Prouff
Regular Paper

Abstract

This article deeply analyzes high-order (HO) Boolean masking countermeasures against side-channel attacks in contexts where the shares are manipulated simultaneously and the correlation coefficient is used as a statistical distinguisher. The latter attacks are sometimes referred to as zero-offset high-order correlation power analysis (HO-CPA). In particular, the main focus is to get the most out of a single mask (i.e., for masking schemes with two shares). The relationship between the leakage characteristics and the attack efficiency is thoroughly studied. Our main contribution is to link the minimum attack order (called HO-CPA immunity) to the amount of information leaked. Interestingly, the HO-CPA immunity can be much larger than the number of shares in the masking scheme. This is made possible by the leakage squeezing. It is a variant of the Boolean masking where masks are recoded relevantly by bijections. This technique and others from the state-of-the-art (namely leak-free masking and wire-tap codes) are overviewed, and put in perspective.

Keywords

High-order masking High-order correlation power analysis (HO-CPA) High-order CPA immunity (\(\mathsf {HCI}\)Mutual information metric (MIM) Leakage squeezing 

References

  1. 1.
    Akkar, M.-L., Giraud, C.: An Implementation of DES and AES Secure against Some Attacks. In LNCS (ed) Proceedings of CHES’01, vol. 2162 of LNCS, pp. 309–318. Springer, Berlin (2001)Google Scholar
  2. 2.
    Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291 (2011)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bhasin, S., Carlet, C., Guilley, S.: Theory of masking with codewords in hardware: low-weight \(d\)th-order correlation-immune Boolean functions. Cryptology ePrint Archive, Report 2013/303, 2013. http://eprint.iacr.org/2013/303/
  4. 4.
    Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: NICV: normalized inter-class variance for detection of side-channel leakage. Cryptology ePrint Archive, Report 2013/717, 2013. http://eprint.iacr.org/2013/717
  5. 5.
    Bhasin, S., Guilley, S., Heuser, A., Danger, J.-L.: From cryptography to hardware: analyzing and protecting embedded xilinx bram for cryptographic applications. J. Cryptogr. Eng. 3(4), 213–225 (2013)CrossRefGoogle Scholar
  6. 6.
    Brier, E., Clavier, C., Olivier, F.: Analysis, correlation power, with a leakage model. In: CHES, vol 3156 of LNCS, pp. 16–29. August 11–13, Cambridge, MA. Springer, Berlin (2004)Google Scholar
  7. 7.
    Bringer, J., Chabanne, H., Le, T.-H.: Protecting AES against side-channel analysis using wire-tap codes. J. Cryptogr. Eng. 2(2), 129–141 (2012)CrossRefGoogle Scholar
  8. 8.
    Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On correlation-immune functions. In: Feigenbaum, J. (ed) CRYPTO, Lecture Notes in Computer Science, vol. 576, pp. 86–100. Springer, Berlin (1991)Google Scholar
  9. 9.
    Cardoso, J.-F.: High-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192 (January 1999)Google Scholar
  10. 10.
    Cardoso, Jean-François: Dependence, correlation and gaussianity in independent component analysis. J. Mach. Learn. Res. 4, 1177–1203 (2003)MathSciNetGoogle Scholar
  11. 11.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds) Chapter of the Monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge. Preliminary version available at http://www.math.univ-paris13.fr/carlet/chap-fcts-Bool-corr.pdf (2010)
  12. 12.
    Carlet, C., Danger, J.-L.: Sylvain Guilley, and Houssem Maghrebi. Leakage Squeezing of Order Two. In INDOCRYPT, vol. 7668 of LNCS, pp. 120–139. Springer, Berlin (2012)Google Scholar
  13. 13.
    Carlet, C., Gaborit, P., Kim, J.-L., Solé, P.: A new class of codes for boolean masking of cryptographic computations. IEEE Trans. Inf. Theory 58(9), 6000–6011 (2012)CrossRefGoogle Scholar
  14. 14.
    Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking schemes for S-Boxes. In: FSE, Lecture Notes in Computer Science. Springer, Berlin (2012)Google Scholar
  15. 15.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Approaches, towards sound, to counteract power-analysis attacks. In: CRYPTO, vol. 1666 of LNCS. Springer, Berlin (1999). ISBN 3-540-66347-9Google Scholar
  16. 16.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES, vol. 2523 of LNCS, pp. 13–28. Springer, Berlin (2002)Google Scholar
  17. 17.
    Coron, J.-S.: Higher order masking of look-up tables. Cryptology ePrint Archive, Report 2013/700. 2013. http://eprint.iacr.org/
  18. 18.
    Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel Cryptanalysis of a Higher Order Masking Scheme. In CHES, vo. 4727 of LNCS, pp. 28–44. Springer, BerlinGoogle Scholar
  19. 19.
    Courtois, N., Goubin, L.: An algebraic masking method to protect AES against power attacks. In: Won, D., Kim, S. (eds) ICISC, vol. 3935 of Lecture Notes in Computer Science, pp. 199–209. Springer, Berlin (2005)Google Scholar
  20. 20.
    Drimer, S., Güneysu, T., Paar, C.: DSPs, BRAMs, and a pinch of logic: Extended recipes for AES on FPGAs. ACM Trans. Reconfig. Technol. Syst. 3(1), 1–27 (2010). doi:10.1145/1661438.1661441
  21. 21.
    Fischer, W., Gammel, B.M.: Masking at gate level in the presence of glitches. In: CHES, vol. 3659 of Lecture Notes in Computer Science, pp. 187–200. Springer, Berlin (2005)Google Scholar
  22. 22.
    Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds) Selected Areas in Cryptography, vol. 6544 of LNCS, pp. 262–280. Springer, Berlin (2010)Google Scholar
  23. 23.
    Goubin, L., Martinelli, A.: Protecting AES with Shamir’s Secret Sharing Scheme. In: Preneel and Takagi [42], pp. 79–94Google Scholar
  24. 24.
    Goubin, L., Jacques P.: DES and differential power analysis. The “Duplication” Method. In: CHES, LNCS, pp. 158–172. Springer, Berlin (1999)Google Scholar
  25. 25.
    Grosso, V., Standaert, F.-X., Prouff, E.: Leakage squeezing, Revisited. In: CARDIS, Lecture Notes in Computer Science. Springer, Berlin (2013)Google Scholar
  26. 26.
    Guilley, S., Carlet, C., Maghrebi, H., Danger, J.-L., Prouff, E.: Leakage squeezing–defeating instantaneous \((d+1)\)th-order correlation power analysis with strictly less than \(d\) masks. In: CryptArchi, June 19–22 2012. Château de Goutelas, Marcoux, France; (abstract)Google Scholar
  27. 27.
    Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable devices. In: Preneel and Takagi [42], pp. 33–48Google Scholar
  28. 28.
    Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic analysis of cryptographic implementations. In: Dunkelman, O. (ed) CT-RSA, vol. 7178 of Lecture Notes in Computer Science, pp. 231–244. Springer, Berlin (2012)Google Scholar
  29. 29.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer, Berlin (1999)Google Scholar
  30. 30.
    Le, T.-H., Berthier, M.: Mutual information analysis under the view of higher-order statistics. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds) IWSEC, volume 6434 of LNCS, pp. 285–300. Springer, Berlin (2010)Google Scholar
  31. 31.
    Maghrebi, H., Carlet, C., Guilley, S., Danger, J.-L.: Optimal first-order masking with linear and non-linear bijections. In: Mitrokotsa, A., Vaudenay, S. (eds) AFRICACRYPT, vol. 7374 of Lecture Notes in Computer Science, pp. 360–377. Springer, Berlin (2012)Google Scholar
  32. 32.
    Maghrebi, H., Guilley, S., Carlet, C., Danger, J.-L.: Classification of high-order boolean masking schemes and improvements of their efficiency. Cryptology ePrint Archive, Report 2011/520, September 2011. http://eprint.iacr.org/2011/520
  33. 33.
    Maghrebi, H., Guilley, S., Danger, J.-L.: Leakage squeezing countermeasure against high-order atacks. In: WISTP, vol. 6633 of LNCS, pp. 208–223. Springer, Berlin (2011). doi:10.1007/978-3-642-21040-2_14
  34. 34.
    Maghrebi, H., Prouff, E., Guilley, S., Danger, J.-L.: A first-order leak-free masking countermeasure. In: CT-RSA, vol. 7178 of LNCS, pp. 156–170. Springer, Berlin (2012). doi:10.1007/978-3-642-27954-6_10
  35. 35.
    Maghrebi, H., Prouff, E., Guilley, S., Danger, J.-L.: Register leakage masking using gray code. In: HOST, IEEE Computer Society, pp. 37–42 (2012). doi:10.1109/HST.2012.6224316
  36. 36.
    Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: revealing the secrets of smart cards. Springer, Berlin (2006). ISBN 0-387-30857-1, http://www.dpabook.org/
  37. 37.
    Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES hardware implementations. In: CHES, vol. 4249 of LNCS, pp. 76–90. Springer, Berlin (2006)Google Scholar
  38. 38.
    Moradi, A., Mischke, O.: How far should theory be from practice? Evaluation of a countermeasure. In: CHES, Leuven, Belgium (2012)Google Scholar
  39. 39.
    Nassar, M., Guilley, S., Danger, J.-L.: Formal analysis of the entropy/security trade-off in first-order masking countermeasures against side-channel attacks. In: INDOCRYPT, vol. 7107 of LNCS, pp. 22–39. Springer, Berlin (2011). doi:10.1007/978-3-642-25578-6_4
  40. 40.
    Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast countermeasure for AES, secure against first- and second-order zero-offset SCAs. In: DATE, pp. 1173–1178. IEEE Computer Society, March 12–16, 2012. Dresden, Germany. (TRACK A: “Application Design”, TOPIC A5: “Secure Systems”)Google Scholar
  41. 41.
    Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)CrossRefMATHGoogle Scholar
  42. 42.
    Preneel, B., Takagi, T. (eds) Cryptographic hardware and embedded systems-CHES 2011—13th International Workshop, Nara, Japan, September 28-October 1, 2011. Proceedings, vol. 6917 of LNCS. Springer, Berlin (2011) Google Scholar
  43. 43.
    Prouff, E., McEvoy, R.P.: First-order side-channel attacks on the permutation tables countermeasure. In: CHES, vol. 5747 of Lecture Notes in Computer Science, pp. 81–96. Springer, Berlin (2009)Google Scholar
  44. 44.
    Prouff, E., Rivain, M.: Masking against side channel attacks: a formal security proof. In: EUROCRYPT, vol. 7881 of LNCS, pp. 142–159. Springer, Berlin (2013)Google Scholar
  45. 45.
    Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Prouff, E., Roche, T.: Attack on a higher-order masking of the AES based on homographic functions. In: Gong, G., Chand Gupta, K. (eds) INDOCRYPT, vol. 6498 of Lecture Notes in Computer Science, pp. 262–281. Springer, Berlin (2010)Google Scholar
  47. 47.
    Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using secure multi-party computation protocols. In: Preneel and Takagi [42], pp. 63–78Google Scholar
  48. 48.
    Japanese RCIS-AIST. SASEBO (Side-channel Attack Standard Evaluation Board, Akashi Satoh) development board: 2013. http://www.risec.aist.go.jp/project/sasebo/
  49. 49.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds) CHES, vol. 6225 of LNCS, pp. 413–427. Springer, Berlin (2010)Google Scholar
  50. 50.
    Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software implementations of block ciphers. Cryptology ePrint Archive, Report 2009/420, September 2009. http://eprint.iacr.org/2009/420
  51. 51.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: LNCS (ed) CHES, vol. 3659 of LNCS, pp. 30–46. Springer, Berlin (2005)Google Scholar
  52. 52.
    Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: EUROCRYPT, vol. 5479 of LNCS, pp. 443–461. Springer, Berlin (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claude Carlet
    • 1
  • Jean-Luc Danger
    • 2
    • 3
  • Sylvain Guilley
    • 3
    • 4
  • Houssem Maghrebi
    • 4
    • 5
  • Emmanuel Prouff
    • 6
  1. 1.LAGA, UMR 7539, CNRS, Department of MathematicsUniversity of Paris VIII and University of Paris XIIISaint-Denis CedexFrance
  2. 2.Department COMELECInstitut MINES-TELECOM/TELECOM-ParisTech, CNRS LTCI (UMR 5141) Paris Cedex 13France
  3. 3.Secure-IC S.A.S.RennesFrance
  4. 4.Department COMELECInstitut MINES-TELECOM/TELECOM-ParisTech, CNRS LTCI (UMR 5141) ParisFrance
  5. 5.Morpho-SafranOsnyFrance
  6. 6.Agence Nationale de la Sécurité des Systèmes d’InformationParis 07 SPFrance

Personalised recommendations