Machine learning in side-channel analysis: a first study

  • Gabriel HospodarEmail author
  • Benedikt Gierlichs
  • Elke De Mulder
  • Ingrid Verbauwhede
  • Joos Vandewalle
Regular Paper


Electronic devices may undergo attacks going beyond traditional cryptanalysis. Side-channel analysis (SCA) is an alternative attack that exploits information leaking from physical implementations of e.g. cryptographic devices to discover cryptographic keys or other secrets. This work comprehensively investigates the application of a machine learning technique in SCA. The considered technique is a powerful kernel-based learning algorithm: the Least Squares Support Vector Machine (LS-SVM). The chosen side-channel is the power consumption and the target is a software implementation of the Advanced Encryption Standard. In this study, the LS-SVM technique is compared to Template Attacks. The results show that the choice of parameters of the machine learning technique strongly impacts the performance of the classification. In contrast, the number of power traces and time instants does not influence the results in the same proportion. This effect can be attributed to the usage of data sets with straightforward Hamming weight leakages in this first study.


Power analysis Side-channel analysis Cryptography Support vector machines Machine learning 


  1. 1.
    Aizerman, M.A., Braverman, E.A., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. In: Automation and Remote Control, vol. 25, pp. 821–837 (1964)Google Scholar
  2. 2.
    Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic side-channel attacks on printers. In: USENIX, p. 20 USENIX Association, USA (2010)Google Scholar
  3. 3.
    Bishop C.: Neural Networks for Pattern Recognition. Oxford University Press, USA (1995)Google Scholar
  4. 4.
    Brabanter, K.D., Karsmakers, P., Ojeda, F., Alzate, C., Brabanter, J.D., Pelckmans, K., Moor, B.D., Vandewalle, J., Suykens, J.: LS-SVMlab toolbox user’s guide version 1.7. (2010)
  5. 5.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES, vol. LCNS 2523, pp. 13–28. Springer, USA (2002)Google Scholar
  6. 6.
    Coron, J.S., Goubin, L.: On boolean and arithmetic masking against differential power analysis. In: CHES, pp. 231–237. Springer, London (2000)Google Scholar
  7. 7.
    Cortes C., Vapnik V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  8. 8.
    Gandolfi, K., Naccache, D., Paar, C., G, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: CHES, vol. 2162, pp. 251–261. Springer, Berlin (2001)Google Scholar
  9. 9.
    Gestel T.V., Suykens J., Baesens B., Viaene S., Vanthienen J., Dedene G., Moor B.D., Vandewalle J.: Benchmarking least squares support vector machine classifiers. Mach. Learn. 54, 5–32 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: CHES, vol. LCNS 4249, pp. 15–29. Springer, Japan (2006)Google Scholar
  11. 11.
    Haykin S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, Englewood Cliffs (1998)Google Scholar
  12. 12.
    Jolliffe I.T.: Principal Component Analysis. Springer, Berlin (1986)Google Scholar
  13. 13.
    Kocher, P.C.: Timing attacks on implementations of Diffie- Hellman, RSA, DSS, and other systems. In: Crypto 96—Advances in Cryptology, pp. 104–113. Springer, UK (1996)Google Scholar
  14. 14.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Crypto 99—Advances in Cryptology. LCNS, vol. 1666, pp. 388–397. Springer, USA (1999)Google Scholar
  15. 15.
    Messerges T.S., Dabbish E.A., Sloan R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Trans. Comput. 51, 541–552 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mitchell T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  17. 17.
    Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-measures for smart cards. In: Proc. Smart Card Programming and Security. LCNS, vol. 2140, pp. 200–210 (2001)Google Scholar
  18. 18.
    Rechberger, C., Oswald, E.: Practical template attacks. In: WISA, vol. 3325, pp. 440–456. Springer, Korea (2004)Google Scholar
  19. 19.
    Rivest, R.L.: Cryptography and machine learning. In: Advances in Cryptology ASIACRYPT, pp. 427–439. Springer, Berlin (1993)Google Scholar
  20. 20.
    Suykens J., Gestel T.V., Brabanter J.D., Moor B.D., Vandewalle J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gabriel Hospodar
    • 1
    Email author
  • Benedikt Gierlichs
    • 1
  • Elke De Mulder
    • 1
  • Ingrid Verbauwhede
    • 1
  • Joos Vandewalle
    • 1
  1. 1.Katholieke Universiteit Leuven, ESAT-SCD-COSIC and IBBTLeuven-HeverleeBelgium

Personalised recommendations