Advertisement

An on-chip glitchy-clock generator for testing fault injection attacks

  • Sho Endo
  • Takeshi Sugawara
  • Naofumi Homma
  • Takafumi Aoki
  • Akashi Satoh
Regular Paper

Abstract

This paper presents a glitchy-clock generator integrated in FPGA for evaluating fault injection attacks and their countermeasures on cryptographic modules. The proposed generator exploits clock management capabilities, which are common in modern FPGAs, to generate clock signal with temporal voltage spike. The shape and timing of the glitchy-clock cycle are configurable at run time. The proposed generator can be embedded in a single FPGA without any external instrument (e.g., a pulse generator and a variable power supply). Such integration enables reliable and reproducible fault injection experiments. In this paper, we examine the characteristics of the proposed generator through experiments on Side-channel Attack Standard Evaluation Board (SASEBO). The result shows that the timing of the glitches can be controlled at the step of about 0.17 ns. We also demonstrate its application to the safe-error attack against an RSA processor.

Keywords

Fault injection attacks Clock glitch RSA Safe-error attack 

References

  1. 1.
    Boneh, D., Demillio,R., Liotin, R.: On the importance of checking crypto-graphic protocols for fault. In: EUROCRYPT 1997, LNCS, vol. 1233, pp. 37–51. Springer, Berlin (1997)Google Scholar
  2. 2.
    Yen S.M., Joye M.: Checking before output may not be enough against fault-based cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)CrossRefGoogle Scholar
  3. 3.
    Biham E., Shamir A.: Differential fault analysis of secret key cryptosystems. CRYPTO 1294, 513–525 (1997)Google Scholar
  4. 4.
    Clavier C.: Secret external encodings do not prevent transient fault analysis. LNCS 4727, 181–194 (2007)Google Scholar
  5. 5.
    Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice guide to fault attack. IACR ePrint archive, vol. Report 2004/100, pp. 1–13 (2004)Google Scholar
  6. 6.
    Kim C.H., Quisquater J.-J.: Faults, injection methods, and fault attacks. IEEE Design Test Comput. 24, 544–545 (2007)CrossRefGoogle Scholar
  7. 7.
    Guilley, S., Sauvage, L., Danger, J.-L., Selmane, N., Pacalet, R.: Silicon-level solutions to counteract passive and active attacks. In: Proceedings of the 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 3–17 (2008)Google Scholar
  8. 8.
    Endo, S., Sugawara, T., Homma, N., Aoki, T.: An on-chip glitchy-clock generator and its application to safe-error attack. In: 2nd International Workshop on Constructive Side-channel Analysis and Secure Design–COSADE, pp. 175–182 (2011)Google Scholar
  9. 9.
    Fukunaga, T., Takahashi, J.: Practical fault attack on a cryptographic lsi with iso/iec 18033-3 block ciphers. In: Proceedings of the 6th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 84–92 (2009)Google Scholar
  10. 10.
    Side-channel Attack Standard Evaluation Board. http://www.rcis.aist.go.jp/special/SASEBO/
  11. 11.
    Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks: combining fault attacks and side channel analysis. In: Proceedings of the 4th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 92–102 (2007)Google Scholar
  12. 12.
    Li Y., Sakiyama K., Gomisawa S., Fukunaga T., Takahashi J., Ohta K.: Fault Sensitivity Analysis. Workshop on Cryptographic Hardware and Embedded Systems-CHES. LNCS 6225, 320–334 (2010)Google Scholar
  13. 13.
    Coron, J.S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: CHES 1999, LNCS, vol. 1717, pp. 292–302. Springer, Berlin (1999)Google Scholar
  14. 14.
    Menezes J.A., Oorschot C.P., Vanstone A.S.: Handbook of Applied Cryptography. Boca Raton, CRC Press (1997)zbMATHGoogle Scholar
  15. 15.
    Miyamoto, A., Homma, N., Aoki, T., Satoh, A.: Systematic design of high-radix montgomery multipliers for rsa processors. In: Proceedings of the 26th IEEE International Conference on Computer Design, pp. 416–422 (2008)Google Scholar
  16. 16.
    Homma N., Miyamoto A., Aoki T., Satoh A., Shamir A.: Comparative power analysis of modular exponentiation algorithms. IEEE Trans. Comput. 59(6), 795–807 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sho Endo
    • 1
  • Takeshi Sugawara
    • 1
  • Naofumi Homma
    • 1
  • Takafumi Aoki
    • 1
  • Akashi Satoh
    • 2
  1. 1.Tohoku UniversitySendaiJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations