Recyclable PUFs: logically reconfigurable PUFs

  • Stefan Katzenbeisser
  • Ünal Kocabaş
  • Vincent van der Leest
  • Ahmad-Reza Sadeghi
  • Geert-Jan Schrijen
  • Christian Wachsmann
Regular Paper

Abstract

Physically Unclonable Functions (PUFs) are security primitives that exploit intrinsic random physical variations of hardware components. In the recent years, many security solutions based on PUFs have been proposed, including identification/authentication schemes, key storage and hardware-entangled cryptography. Existing PUF instantiations typically exhibit a static challenge/response behavior, while many practical applications would benefit from reconfigurable PUFs. Examples include the revocation or update of “secrets” in PUF-based key storage or cryptographic primitives based on PUFs. In this paper, we present the concept of logically reconfigurable PUFs (LR-PUFs) that allow changing the challenge/response behavior without physically replacing or modifying the underlying PUF. We present two efficient LR-PUF constructions and evaluate their performance and security. In this context, we introduce a formal security model for LR-PUFs. Finally, we discuss several practical applications of LR-PUFs focusing on lightweight solutions for resource-constrained embedded devices, in particular RFIDs.

Keywords

Physically unclonable functions (PUFs) Logically reconfigurable PUFs Recyclable access tokens 

References

  1. 1.
    Akdemir, K.D., Wang, Z., Karpovsky, M.G., Sunar, B.: Design of cryptographic devices resilient to fault injection attacks using nonlinear robust codes. In: Fault Analysis in Cryptography (2011)Google Scholar
  2. 2.
    Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A formal foundation for the security features of physical functions. In: IEEE Symposium on Security and Privacy, pp. 397–412. IEEE Computer Society, New York (2011)Google Scholar
  3. 3.
    Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-resilient encryption based on physically unclonable functions. In: Advances in Cryptology (ASIACRYPT). LNCS, vol. 5912, pp. 685–702 (2009)Google Scholar
  4. 4.
    Armknecht, F., Sadeghi, A.R., Visconti, I., Wachsmann, C.: On RFID privacy with mutual authentication and tag corruption. In: International Conference on Applied Cryptography and Network Security (ACNS). LNCS, vol. 6123, pp. 493–510. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Cryptographic Hardware and Embedded Systems (CHES). LNCS, vol. 4727, pp. 450–466. Springer, Berlin (2007)Google Scholar
  6. 6.
    Californians Against Waste: E-waste laws in other states. http://www.cawrecycles.org/issues/ca_e-waste/other_states (2011)
  7. 7.
    Calypso Networks Association: http://www.calypsonet-asso.org/ (2011)
  8. 8.
    Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream cipher in MiFare Classic and Oyster Cards. Cryptology ePrint Archive, Report 2008/166 (2008)Google Scholar
  9. 9.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors. In: Security with Noisy Data, pp. 79–99. Springer, Berlin (2007)Google Scholar
  10. 10.
    Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: memory-based secure key storage. In: ACM Workshop on Scalable Trusted Computing (ACM STC). ACM Press, New York (2011)Google Scholar
  11. 11.
    European Commission: Waste electrical and electronic equipment website. http://ec.europa.eu/environment/waste/weee/index_en.htm (2011)
  12. 12.
    Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R., Schreur, R.W., Jacobs, B.: Dismantling MiFare classic. In: Jajodia, S., Lopez, J. (eds.) 13th European Symposium on Research in Computer Security (ESORICS). LNCS, vol. 5283, pp. 97–114. Springer, Berlin (2008)Google Scholar
  13. 13.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Computer Security Applications Conference, pp. 149–160. IEEE Computer Society, New York (2002)Google Scholar
  14. 14.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 148–160 (2002)Google Scholar
  15. 15.
    Gassend B., Lim D., Clarke D., van Dijk M., Devadas S.: Identification and authentication of integrated circuits: research articles. Concurr. Comput. Pr. Exp. 16(11), 1077–1098 (2004)CrossRefGoogle Scholar
  16. 16.
    Guajardo, J., Kumar, S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Cryptographic Hardware and Embedded Systems, CHES 2007. Lecture Notes in Computer Science, vol. 4727, pp. 63–80. Springer, Berlin (2007)Google Scholar
  17. 17.
    Guajardo, J., Kumar, S., Schrijen, G.J., Tuyls, P.: Brand and IP protection with physical unclonable functions. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008, pp. 3186–3189 (2008)Google Scholar
  18. 18.
    Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Workshop on Cryptographic Hardware and Embedded Systems (CHES). LNCS, vol. 4727, pp. 63–80 (2007)Google Scholar
  19. 19.
    Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In: Conference on RFID Security (RFIDSec) (2007)Google Scholar
  20. 20.
    Intrinsic ID: Product webpage. http://www.intrinsic-id.com/products.htm (2011)
  21. 21.
    Juels A.: RFID security and privacy: a research survey. J. Sel. Areas Commun. 24(2), 381–395 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Katzenbeisser, S., Kocabaş, U., van der Leest, V., Sadeghi, A.R., Schrijen, G.J., Schröder, H., Wachsmann, C.: Recyclable PUFs: logically reconfigurable PUFs (full version). http://www.trust.cased.de/ (2011)
  23. 23.
    Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract: the butterfly PUF protecting IP on every FPGA. In: IEEE International Workshop on Hardware-Oriented Security and Trust, HOST 2008, pp. 67–70 (2008)Google Scholar
  24. 24.
    Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract: the butterfly PUF protecting IP on every FPGA. In: IEEE Workshop on Hardware-Oriented Security and Trust (HOST), pp. 67–70 (2008)Google Scholar
  25. 25.
    Kursawe, K., Sadeghi, A.R., Schellekens, D., Tuyls, P., Scoric, B.: Reconfigurable physical unclonable functions—enabling technology for tamper-resistant storage. In: IEEE International Workshop on Hardware-Oriented Security and Trust (HOST), pp. 22–29. IEEE Computer Society, San Francisco (2009)Google Scholar
  26. 26.
    Lai, X., Massey, J.: Hash functions based on block ciphers. In: Rueppel, R. (ed.) Advances in Cryptology (EUROCRYPT). LNCS, vol. 658, pp. 55–70. Springer, Berlin (1993)Google Scholar
  27. 27.
    Lao, Y., Parhi, K.K.: Novel reconfigurable silicon unclonable functions. In: Workshop on Foundations of Dependable and Secure Cyber-Physical Systems (FDSCPS) (2011)Google Scholar
  28. 28.
    Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication application. In: Symposium on VLSI Circuits, pp. 176–159 (2004)Google Scholar
  29. 29.
    van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 53–62 (2010)Google Scholar
  30. 30.
  31. 31.
    Lim, D.: Extracting Secret Keys from Integrated Circuits. Master’s thesis, MIT, MA, USA (2004)Google Scholar
  32. 32.
    Lim D., Lee J.W., Gassend B., Suh G.E., van Dijk M., Devadas S.: Extracting secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13(10), 1200–1205 (2005)CrossRefGoogle Scholar
  33. 33.
    Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power sub-threshold design of secure physical unclonable functions. In: ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 43–48 (2010)Google Scholar
  34. 34.
    Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable devices. In: Workshop on Information and System Security (WISSec), p. 17 (2008)Google Scholar
  35. 35.
    Maes R., Verbauwhede I.: Physically unclonable functions: a study on the state of the art and future research directions. In: Sadeghi, A.R., Naccache, D. (eds) Towards Hardware-Intrinsic Security, Information Security and Cryptography, pp. 3–37. Springer, Berlin (2010)CrossRefGoogle Scholar
  36. 36.
    Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of RO-PUF. In: IEEE Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99 (2010)Google Scholar
  37. 37.
    Monnet Y., Renaudin M., Leveugle R.: Designing resistant circuits against malicious faults injection using asynchronous logic. IEEE Trans. Comput. 55, 1104–1115 (2006)CrossRefGoogle Scholar
  38. 38.
    Nohl, K., Plötz, H.: MiFare—little security despite obscurity. http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html (2007)
  39. 39.
    NXP Semiconductors: MiFare applications. http://www.mifare.net/applications/ (2011)
  40. 40.
    NXP Semiconductors: MiFare smartcard ICs. http://www.mifare.net/products/smartcardics/ (2011)
  41. 41.
    Octopus Holdings. http://www.octopus.com.hk/en/ (2011)
  42. 42.
    OV-Chipkaart. http://www.ov-chipkaart.nl/ (2011)
  43. 43.
    Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive devices. In: IEEE International Conference on Pervasive Computing and Communications (PERCOM’08), pp. 170–178. IEEE Computer Society, New York (2008)Google Scholar
  44. 44.
    Pappu R.S., Recht B., Taylor J., Gershenfeld N.: Physical one-way functions. Science 297, 2026–2030 (2002)CrossRefGoogle Scholar
  45. 45.
    Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy: modest proposals for low-cost RFID systems. Auto-ID Labs Research Workshop (2004)Google Scholar
  46. 46.
    Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: ACM conference on Computer and communications security (ACM CCS), pp. 237–249 (2010)Google Scholar
  47. 47.
    Sadeghi, A.R., Visconti, I., Wachsmann, C.: PUF-enhanced RFID security and privacy. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security, Information Security and Cryptography, pp 3–37. Springer, Berlin (2010)Google Scholar
  48. 48.
    Schreur, R.W., van Rossum, P., Garcia, F., Teepe, W., Hoepman, J.H., Jacobs, B., de Koning Gans, G., Verdult, R., Muijrers, R., Kali, R., Kali, V.: Security flaw in MiFare Classic. http://www.sos.cs.ru.nl/applications/rfid/pressrelease.en.html (2008)
  49. 49.
    Schulz, S., Sadeghi, A.R., Wachsmann, C.: Short paper: lightweight remote attestation using physical functions. In: Proceedings of the fourth ACM conference on Wireless network security, WiSec ’11, pp. 109–114. ACM, New York (2011)Google Scholar
  50. 50.
    Skorobogatov, S.: Semi-invasive attacks—a new approach to hardware security analysis. Technical Report UCAM-CL-TR-630, University of Cambridge, UK (2005)Google Scholar
  51. 51.
    Skorobogatov, S.: Local heating attacks on Flash memory devices. In: IEEE International Workshop on Hardware-Oriented Security and Trust (HOST’09), pp. 1–6. IEEE Computer Society, New York (2009)Google Scholar
  52. 52.
    Soybali, M., B. Ors, G.S.: Implementation of a PUF circuit on an FPGA. In: IFIP International Conference on New Technologies Mobility and Security, pp. 1–5. IEEE Computer Society, New York (2011)Google Scholar
  53. 53.
    Su, Y., Holleman, J., Otis, B.: A 1.6pJ/bit96% stable chip-ID generating circuit using process variations. In: IEEE International Solid-State Circuits Conference (ISSCC), pp. 406–611 (2007)Google Scholar
  54. 54.
    Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Design Automation Conference, pp. 9–14 (2007)Google Scholar
  55. 55.
    Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: The Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13–17, 2005, Proceedings. Lecture Notes on Computer Science (LNCS), vol. 3860, pp. 115–131. Springer, Berlin (2006)Google Scholar
  56. 56.
    Tuyls, P., Schrijen, G.J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-proof hardware from protective coatings. In: Workshop on Cryptographic Hardware and Embedded Systems (CHES). LNCS, vol. 4249, pp. 369–383 (2006)Google Scholar
  57. 57.
    Verayo, Inc.: Product webpage. http://www.verayo.com/product/products.html (2011)
  58. 58.
    Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable functions. In: Applied Cryptography and Network Security (ACNS). LNCS, vol. 3531, pp. 407–422 (2005)Google Scholar
  59. 59.
    Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of low-cost radio frequency identification systems. In: Proceedings of PerCom. LNCS, vol. 2802, pp. 50–59. Springer, Berlin (2003)Google Scholar
  60. 60.
    Wikipedia: OV-Chipkaart (2011) http://en.wikipedia.org/wiki/OV-chipkaart

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Katzenbeisser
    • 1
  • Ünal Kocabaş
    • 2
  • Vincent van der Leest
    • 3
  • Ahmad-Reza Sadeghi
    • 4
  • Geert-Jan Schrijen
    • 3
  • Christian Wachsmann
    • 2
  1. 1.Security Engineering GroupTechnische Universität Darmstadt (CASED)DarmstadtGermany
  2. 2.System Security LabTechnische Universität Darmstadt (CASED)DarmstadtGermany
  3. 3.Intrinsic-ID B.V.EindhovenThe Netherlands
  4. 4.System Security LabTechnische Universität Darmstadt (CASED) and Fraunhofer SIT DarmstadtDarmstadtGermany

Personalised recommendations