Advertisement

European Actuarial Journal

, Volume 9, Issue 2, pp 349–360 | Cite as

Insurance: models, digitalization, and data science

  • Hansjörg Albrecher
  • Antoine Bommier
  • Damir Filipović
  • Pablo Koch-MedinaEmail author
  • Stéphane Loisel
  • Hato Schmeiser
Original Research Paper
  • 513 Downloads

Abstract

This article summarizes the main topics and findings from the Swiss Risk and Insurance Forum 2018. That event gathered experts from academia, insurance industry, regulatory bodies, and consulting companies to discuss the challenges arising from the impact of data science and, more generally, of digitalization to the insurance sector.

Notes

Acknowledgements

We thank Stephan Schreckenberg for suggesting the format of the conference, and for his critical and active support in the creation of the Swiss Risk and Insurance Forum. We thank all participants for the stimulating and lively discussion: 1. Hansjörg Albrecher (Université de Lausanne, SFI), 2. Gianluca Antonini (Swiss Re), 3. Jörg Behrens (Fintegral), 4. Antoine Bommier (ETH Zurich), 5. Karsten Bromann (Solidum), 6. Roland Bürgi (Systemorph), 7. Michel Denuit (UC Louvain), 8. Liran Einav (Stanford University), 9. Damir Filipovic (EPFL, SFI), 10. Isabelle Flückiger (Accenture), 11. Irina Gemmo (University of Frankfurt), 12. Hansjörg Germann (Zurich Insurance), 13. Kai Giesecke (Stanford University), 14. Jean-Pierre Hubaux (EPFL), 15. Carmelo Iantosca (AXA-Winterthur), 16. Benno Keller (Geneva Association), 17. Pablo Koch (University of Zurich, SFI), 18. Kai-Nicholas Kunze (Generali Lings), 19. Stéphane Loisel (Université Lyon 1), 20. Alexander Mürmann (WU Wien), 21. Michael Müller (Baloise), 22. Tanguy Polet (Swiss Life France), 23. Frank Schiller (Munich Re), 24. Hato Schmeiser (University of St. Gallen), 25. Stephan Schreckenberg (Swiss Re Institute), 26. Effy Vayena (ETH Zurich), 27. Heiner Weber (Katalysen), 28. Stefan Weber (LU Hannover), 29. Lutz Wilhelmy (Swiss Re). The Swiss Risk and Insurance Forum 2018 received financial support from Fintegral, Swiss Re Institute, the Swissquote Chair in Quantitative Finance at EPFL, the ETH Risk Centre, the Center for Finance and Insurance at the University of Zurich and the Department of Actuarial Science of the University of Lausanne.

References

  1. 1.
    Albrecher H, Bauer D, Embrechts P, Filipovic D, Koch-Medina P, Korn R, Loisel S, Pelsser A, Schiller F, Schmeiser H, Wagner J (2018) Asset-liability management for long-term insurance business. Eur Actuar J 8:9–25MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albrecher H, Embrechts P, Filipovic D, Harrison G, Koch P, Loisel S, Vanini P, Wagner J (2016) Old-age provision: past, present and future. Eur Actuar J 6:287–306MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albrecht P, Huggenberger M (2017) The fundamental theorem of mutual insurance. Insur Math Econ 75:180–188MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ayuso M, Guillen M, Pérez-Marín AM (2016) Telematics and gender discrimination: some usage-based evidence on whether men’s risk of accidents differs from women’s. Risks 4:10CrossRefGoogle Scholar
  5. 5.
    Bafin (2018) Supervision and regulation in the age of big data and artificial intelligence, Bafin PerspectivesGoogle Scholar
  6. 6.
    Baudry M, Robert CY (2017) Non-parametric individual claim reserving in insurance. Working paperGoogle Scholar
  7. 7.
    Browne MJ, Gemmo I, Gründl H (2018) Privacy concerns in insurance markets: implications for market equilibria and social welfare. ICIR Working Paper Series, No. 25Google Scholar
  8. 8.
    Cappiello A (2018) Technology and the insurance industry. Palgrave-Macmillan, LondonCrossRefGoogle Scholar
  9. 9.
    Denuit M, Hainaut D, Trufin J (2019) Effective statistical learning methods for actuaries. Springer, BerlinCrossRefGoogle Scholar
  10. 10.
    Eling M, Lehmann M (2018) The impact of digitalization on the insurance value chain and the insurability of risks. Geneva Pap Risk Insur Issues Pract 43:359–396CrossRefGoogle Scholar
  11. 11.
    Karoui N, El S, Loisel Y Salhi (2017) Minimax optimality in robust detection of a disorder time in doubly-stochastic Poisson processes. Ann Appl Probab 27:2515–2538MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gatzert N, Schmeiser H (2012) The merits of pooling claims revisited. J Risk Finance 13:184–198CrossRefGoogle Scholar
  13. 13.
    Guillen M, Nielsen JP, Ayuso M, Pérez-Marín AM (2018) The use of telematics devices to improve automobile insurance rates. Risk Anal 39:662–672CrossRefGoogle Scholar
  14. 14.
    Koch-Medina P, Cambou M, Munari C (2014) Expert forum on “risk measures and regulation in insurance”. University of Zurich. http://media.swissre.com/documents/Summary_of_research_topics1.pdf
  15. 15.
    Lopez O, Milhaud X, Thérond P (2016) Tree-based censored regression with applications in insurance. Electron J Stat 10:2685–2716MathSciNetCrossRefGoogle Scholar
  16. 16.
    McKinsey (2016a) Automating the insurance industry, McKinsey QuarterlyGoogle Scholar
  17. 17.
    McKinsey (2016b) Making Digital strategy a reality in insurance, Digital McKinseyGoogle Scholar
  18. 18.
    McKinsey (2017) Digital disruption in insurance: cutting through the noise, Digital McKinseyGoogle Scholar
  19. 19.
    Naylor M (2017) Insurance transformed: technological disruption. Palgrave-Macmillan, LondonCrossRefGoogle Scholar
  20. 20.
    Naveed M, Ayday E, Clayton E, Fellay J, Gunter C, Hubaux J-P, Malin B, Wang X (2015) Privacy in the Genomic Era. ACM Comput Surv 48:1–43CrossRefGoogle Scholar
  21. 21.
    Nakamoto S (2018) Bitcoin: a peer-to-peer electronic cash system. Working Paper. https://bitcoin.org/bitcoin.pdf?
  22. 22.
    Ohlsson E, Johansson B (2010) Non-life insurance pricing with generalized linear models, vol 2. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Sandor RL (2018) Electronic trading and blockchain: yesterday, today and tomorrow. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  24. 24.
    Verbelen R, Antonio K, Claeskens G (2018) Unravelling the predictive power of telematics data in car insurance pricing. J R Stat Soc Ser C (Appl Stat) 67:1275–1304MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wüthrich MV (2018) Neural networks applied to chain-ladder reserving. Eur Actuar J 8:407–436MathSciNetCrossRefGoogle Scholar

Copyright information

© EAJ Association 2019

Authors and Affiliations

  1. 1.Department of Actuarial Science, Faculty of Business and EconomicsUniversity of Lausanne and Swiss Finance InstituteLausanneSwitzerland
  2. 2.Department of Management, Technology, and EconomicsSwiss Federal Institute of Technology ZurichZurichSwitzerland
  3. 3.Ecole Polytechnique Fédérale de Lausanne and Swiss Finance InstituteLausanneSwitzerland
  4. 4.Center for Finance and InsuranceUniversity of Zurich and Swiss Finance InstituteZurichSwitzerland
  5. 5.Institut de Science Financiére et d’Assurances (ISFA), Laboratoire SAFUniversité Claude Bernard LyonLyonFrance
  6. 6.Institute for Insurance EconomicsUniversity of St. GallenSt. GallenSwitzerland

Personalised recommendations