European Actuarial Journal

, Volume 7, Issue 2, pp 297–336 | Cite as

Producing the Dutch and Belgian mortality projections: a stochastic multi-population standard

  • Katrien Antonio
  • Sander Devriendt
  • Wouter de Boer
  • Robert de Vries
  • Anja De Waegenaere
  • Hok-Kwan Kan
  • Egbert Kromme
  • Wilbert Ouburg
  • Tim Schulteis
  • Erica Slagter
  • Marco van der Winden
  • Corné van Iersel
  • Michel Vellekoop
Original Research Paper


The quantification of longevity risk in a systematic way requires statistically sound forecasts of mortality rates and their corresponding uncertainty. Actuarial associations have a long history and continue to play an important role in the development, application and dispersion of mortality projections for the countries they represent. This paper gives an in depth presentation and discussion of the mortality projections as published by the Dutch (in 2014) and Belgian (in 2015) actuarial associations. The goal of these institutions was to publish a stochastic mortality projection model in line with both rigorous standards of state-of-the-art academic work as well as the requirements of practical work such as robustness and transparency. Constructed by a team of authors from both academia and practice, the developed mortality projection standard is a Li and Lee type multi-population model. To project mortality, a global Western European trend and a country-specific deviation from this trend are jointly modelled with a bivariate time series model. We motivate and document all choices made in the model specification, calibration and forecasting process as well as the model selection strategy. We show the model fit and mortality projections and illustrate the use of the model in several pension-related applications.


Stochastic mortality models Projected mortality Stochastic multi-population mortality Li and Lee model Lee and Carter model Poisson regression Pension calculations Longevity risk Professional actuarial associations 



The authors would like to thank the two anonymous referees who provided helpful suggestions to improve an earlier draft of this paper. The authors acknowledge the support of the Koninklijk Actuarieel Genootschap and the Institute of Actuaries in Belgium. Katrien and Sander are grateful for the financial support of Ageas Continental Europe, Fonds voor Wetenschappelijk Onderzoek (\(\textsf {FWO}\)) and the support from KU Leuven through the C2 COMPACT research project.


  1. 1.
    Albrecher H, Embrechts P, Filipović D, Harrison G, Koch P, Loisel S, Vanini P, Wagner J (2016) Old-age provision: past, present, future. Eur Actuar J 6(2):287–306MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antonio K (2012) Sluiten van de periodetafel GBM/V 2005–2010.
  3. 3.
    Antonio K, Devolder L, Devriendt S (2015) The IA\(\mid\)BE 2015 mortality projection for the Belgian population.
  4. 4.
    Barrieu P, Bensusan H, El Karoui N, Hillairet C, Loisel S, Ravanelli C, Salhi Y (2012) Understanding, modelling and managing longevity risk: key numbers and main challenges. Scand Actuar J 3:203–231CrossRefzbMATHGoogle Scholar
  5. 5.
    Börger M, Fleischer D, Kuksin N (2014) Modeling the mortality trend under modern solvency regimes. ASTIN Bull 44(1):1–38MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brouhns N, Denuit M, Vermunt J (2002) A Poisson log-bilinear regression approach to the construction of projected life tables. Insur Math Econ 31:373–393CrossRefzbMATHGoogle Scholar
  7. 7.
    Cairns A (2007) LifeMetrics open source R code. JPMorgan Chase Bank
  8. 8.
    Cairns A, Blake D, Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J Risk Insur 73:687–718CrossRefGoogle Scholar
  9. 9.
    Cairns A, Blake D, Dowd K, Coughlan G, Epstein D, Ong A, Balevich I (2009) A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. N Am Actuar J 13(1):1–35MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cairns A, Blake D, Dowd K, Kessler A (2016) Phantoms never die: living with unreliable population data. J R Stat Soc Ser A (Stat Soc) 179(4):975–1005MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cairns A, El Boukfaoui G (2017) Basis risk in index based longevity hedges: a guide for longevity hedgers. Working Paper, Heriot-Watt University, Edinburgh.
  12. 12.
    Carter L, Lee R (1992) Forecasting demographic components: modeling and forecasting US sex differentials in mortality. Int J Forecast 8:393–411CrossRefGoogle Scholar
  13. 13.
    Chen H, MacMinn R, Sun T (2015) Multi-population mortality models: a factor copula approach. Insur Math Econ 63:135–146MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Commissie Pensioenhervorming 2020–2040 (2014). Een sterk en betrouwbaar sociaal contract. Voorstellen van de Commissie Pensioenhervorming 2020–2040 voor een structurele hervorming van de pensioenstelsels.
  15. 15.
    Commissie Pensioenhervorming 2020–2040 (2015) Zware beroepen, deeltijds pensioen en eerlijke flexibiliteit in het pensioensysteem. Aanvullend advies van de Commissie Pensioenhervorming 2020–2040.
  16. 16.
    Czado C, Gneiting T, Held L (2009) Predictive model assessment for count data. Biometrics 65(4):1254–1261MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D’Amato V, Haberman S, Piscopo G, Russolillo M, Trapani L (2014) Detecting common longevity trends by a multiple population approach. N Am Actuar J 18(1):139–149MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D’Amato V, Haberman S, Piscopo G, Russolillo M, Trapani L (2016) Multiple mortality modeling in a Poisson Lee–Carter framework. Commun Stat Theory Methods 45(6):1723–1732MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dawid A, Sebastiani P (1999) Coherent dispersion criteria for optimal experimental design. Ann Stat 27:65–81MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    De Waegenaere A, Melenberg B, Boonen T (2012) Het koppelen van de pensioenleeftijd en pensioenaanspraken aan de levensverwachting. Netspar Design Papers, 12Google Scholar
  21. 21.
    Denuit M, Goderniaux A-C (2005) Closing and projecting life tables using log-linear models. Bull Swiss Assoc Actuar 1:29–48MathSciNetzbMATHGoogle Scholar
  22. 22.
    Devolder P, Maréchal X (2007) Réforme du régime belge de pension légale basée sur la longévité. Belg Actuar Bull 7:34–38MathSciNetGoogle Scholar
  23. 23.
    Dickson D, Hardy M, Waters H (2009) Actuarial mathematics for life contingent risks. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  24. 24.
    Doray L (2008) Inference for the logistic-type models for the force of mortality. In: Living to 100 and beyond, SOA Monograph M-LI08-01, pp 1–18Google Scholar
  25. 25.
    Dowd K, Cairns A, Blake D, Coughlan G, Epstein D, Khalaf-Allah M (2010) Backtesting stochastic mortality models. N Am Actuar J 14(3):281–298MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Enchev V, Kleinow T, Cairns A (2017) Multi-population mortality models: fitting, forecasting and comparisons. Scand Actuar J 2017(4):319–342MathSciNetCrossRefGoogle Scholar
  27. 27.
    European Commission (DG ECFIN) and Economic Policy Committee (Ageing Working Group) (2015) The 2015 ageing report: Economic and budgetary projections for the 28 EU member states (2013–2060). Eur Econ 3.
  28. 28.
    Haberman S, Kaishev V, Millossovich P, Villegas A, Baxter S, Gaches A, Gunnlaugson S, Sison M (2014) Longevity basis risk: a methodology for assessing basis risk. Technical report, Institute and Faculty of Actuaries.
  29. 29.
    Haberman S, Renshaw A (2011) A comparative study of parametric mortality models. Insur Math Econ 48:35–55MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hyndman R, Booth H, Yasmeen F (2013) Coherent mortality forecasting: the product-ratio method with functional time series models. Demography 50(1):261–283CrossRefGoogle Scholar
  31. 31.
    IMF (2012) Global financial stability report—the quest for lasting stability.
  32. 32.
    Institute and Faculty of Actuaries (2012) CMI Working paper 63.
  33. 33.
    Institute of Actuaries and Faculty of Actuaries (1973) Continuous mortality investigation reports.
  34. 34.
    Kannistö V (1992) Development of the oldest-old mortality, 1950–1990: evidence from 28 developed countries. Odense University Press, OdenseGoogle Scholar
  35. 35.
    Kleinow T (2015) A common age effect model for the mortality of multiple populations. Insur Math Econ 63:147–152MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Koninklijk Actuarieel Genootschap (2012) Prognosetafel AG2012.
  37. 37.
    Koninklijk Actuarieel Genootschap (2014) Prognosetafel AG2014.
  38. 38.
    Lee R, Carter L (1992) Modeling and forecasting the time series of US mortality. J Am Stat Assoc 87:659–671zbMATHGoogle Scholar
  39. 39.
    Li J (2013) A Poisson common factor model for projecting mortality and life expectancy jointly for females and males. Popul Stud J Demogr 67(1):111–126CrossRefGoogle Scholar
  40. 40.
    Li N, Lee R (2005) Coherent mortality forecasts for a group of populations: an extension of the Lee–Carter method. Demography 42(3):575–594CrossRefGoogle Scholar
  41. 41.
    National Association of Insurance Commissioners (2013) NAIC model rule (regulation) for recognizing a new annuity mortality table for use in determining reserve liabilities for annuities. MDL-821
  42. 42.
    Niu G, Melenberg B (2014) Trends in mortality decrease and economic growth. Demography 51(5):1755–1773CrossRefGoogle Scholar
  43. 43.
    Pitacco E, Denuit M, Haberman S, Olivieri A (2009) Modeling longevity dynamics for pensions and annuity business. Oxford University Press, OxfordzbMATHGoogle Scholar
  44. 44.
    Plat R (2009) On stochastic mortality models. Insur Math Econ 45:393–404MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Renshaw A, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38:556–570CrossRefzbMATHGoogle Scholar
  46. 46.
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Shang H (2016) Mortality and life expectancy forecasting for a group of populations in developed countries: a multilevel functional data method. Ann Appl Stat 10(3):1639–1672MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Society of Actuaries (2014) Mortality improvement scale MP-2014.
  49. 49.
    Stevens R (2016) Managing longevity risk by implementing sustainable full retirement age policies. J Risk Insur. doi: 10.1111/jori.12153 Google Scholar
  50. 50.
    Van Berkum F, Antonio K, Vellekoop M (2016) The impact of multiple structural changes on mortality predictions. Scand Actuar J 2016(7):581–603MathSciNetCrossRefGoogle Scholar
  51. 51.
    Villegas A, Haberman S (2014) On the modeling and forecasting of socioeconomic mortality differentials: an application to deprivation and mortality in England. N Am Actuar J 18(1):168–193MathSciNetCrossRefGoogle Scholar

Copyright information

© EAJ Association 2017

Authors and Affiliations

  • Katrien Antonio
    • 1
    • 2
    • 5
  • Sander Devriendt
    • 1
  • Wouter de Boer
    • 4
  • Robert de Vries
    • 4
  • Anja De Waegenaere
    • 3
    • 5
  • Hok-Kwan Kan
    • 5
    • 6
  • Egbert Kromme
    • 4
    • 10
  • Wilbert Ouburg
    • 2
    • 5
    • 7
  • Tim Schulteis
    • 4
    • 8
  • Erica Slagter
    • 5
    • 6
  • Marco van der Winden
    • 4
    • 9
  • Corné van Iersel
    • 4
  • Michel Vellekoop
    • 2
    • 4
  1. 1.Faculty of Economics and BusinessKU LeuvenBelgium
  2. 2.Faculty of Economics and BusinessUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Center for Economic Research (CentER)Tilburg UniversityTilburgThe Netherlands
  4. 4.Commissie Sterfte Onderzoek, Koninklijk Actuarieel GenootschapUtrechtThe Netherlands
  5. 5.Werkgroep Prognosetafels, Koninklijk Actuarieel GenootschapUtrechtThe Netherlands
  6. 6.AegonThe HagueThe Netherlands
  7. 7.Delta LloydAmsterdamThe Netherlands
  8. 8.Algemene Pensioen Groep (APG)HeerlenThe Netherlands
  9. 9.PGGMZeistThe Netherlands
  10. 10.KPMGAmstelveenThe Netherlands

Personalised recommendations