European Actuarial Journal

, Volume 4, Issue 1, pp 181–196 | Cite as

Best estimate calculations of savings contracts by closed formulas: application to the ORSA

  • François Bonnin
  • Frédéric Planchet
  • Marc Juillard
Original Research Paper


In this paper we present an analytical approximation of the best estimate of a savings contract. This approximation aims to provide a framework for robust and justifiable calculation of the own risk solvency assessment avoiding the complexity of direct approaches. A numerical application is proposed.


  1. 1.
    Aase KK, Persson SA (1996) Valuation of the minimum guaranteed return embedded in life insurance products. Wharton School Working Paper, p 96–20Google Scholar
  2. 2.
    Bacinello AR (2003) Fair valuation of the surrender option embedded in a guarantee life insurance participating policy. Trieste University Working PaperGoogle Scholar
  3. 3.
    Ballotta L (2004) Alternative framework for the fair valuation of participating life insurance contracts. Cass Business School, Actuarial Research Paper, p 157Google Scholar
  4. 4.
    Bauer D, Bergmann D, Reuss A (2010) Solvency II and nested simulations—a least-squares monte carlo approach. In: Proceedings of the 2010 ICA congressGoogle Scholar
  5. 5.
    Brigo D, Mercurio F (2006) Interest rate models—theory and practice, 2nd edn. SpringerGoogle Scholar
  6. 6.
    Briys E, de Varenne F (1994) Life insurance in a contingent claim framework: pricing and regulatory implications. Geneva Papers Risk Insurance Theory 19:53–72CrossRefGoogle Scholar
  7. 7.
    Ceiops (2010) Technical specifications for QIS5, European commissionGoogle Scholar
  8. 8.
    Guibert Q, Juillard M, Planchet F (2012) Measuring uncertainty of solvency coverage ratio in ORSA for non-life insurance. Eu Actuar J. to appearGoogle Scholar
  9. 9.
    Hainaut D (2009) Profit sharing: a stochastic control approach. Bulletin Français d’Actuariat 9:18Google Scholar
  10. 10.
    Planchet F, Leroy G (2011) Solvabilité 2: quels standards pour le risque de marché ?, la Tribune de l’Assurance (rubrique “le mot de l’actuaire”) p 156 du 01 Mar 2011Google Scholar
  11. 11.
    Planchet F, Therond PE, Juillard M (2011) Modeles financiers en assurance. Analyses de risque dynamiques, 2nd edn. Economica, ParisGoogle Scholar
  12. 12.
    R Development Core Team (2012) R: a language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria.
  13. 13.
    Wüthrich M, Merz M (2013) Financial modeling, actuarial valuation and solvency in insurance. SpringerGoogle Scholar

Copyright information

© DAV / DGVFM 2014

Authors and Affiliations

  • François Bonnin
    • 1
    • 2
  • Frédéric Planchet
    • 1
    • 3
  • Marc Juillard
    • 1
    • 4
  1. 1.Université de Lyon, Université Claude Bernard Lyon 1, ISFA, Laboratoire SAFLyonFrance
  2. 2.Hiram FinanceParisFrance
  3. 3.Prim’ActParisFrance
  4. 4.SIA PartnersParisFrance

Personalised recommendations