European Actuarial Journal

, Volume 3, Issue 2, pp 439–452 | Cite as

Some remarks on capital allocation by percentile layer

Original Research Paper


Capital allocation by percentile layer is a relatively new method. There is a claim that this method will generate different capital allocations than three other popular methods: CoVaR, Alternative CoVaR and CoTVAR methods. It is also claimed that capital allocation by percentile allocates more capital to catastrophic perils that will cause more severe losses. We study these four methods formally. We show neither of the two claims holds in general. The results of this paper will provide actuaries and other financial risk analysts with valuable insights into capital allocation by percentile layer.


Capital allocation Percentile layer CoVaR  Alternative CoVaR CoTVaR VaR-dependence 


  1. 1.
    Acerbi C, Tasche D (2002) On the coherence of expected shortfall. J Bank Financ 26(7):1505–1518CrossRefGoogle Scholar
  2. 2.
    Bodoff NM (2009) Capital allocation by percentile layer. Variance 3(1):13–30Google Scholar
  3. 3.
    Cummins JD (2000) Allocation of capital in the insurance industry. Risk Manag Insur Rev 3(1):7–27CrossRefGoogle Scholar
  4. 4.
    Denault M (2001) Coherent allocation of risk capital. J Risk Insur 4(1):1–34MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dhaene J, Denuit M, Goovaerts MJ, Kaas R, Vyncke D (2002) The concepts of comonotonicity in actuarial science and finance: theory. Insur Math Econ 31(1):3–33MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dhaene J, Goovaerts MJ, Kaas R (2003) Economic capital allocation derived from risk measures. North Am Actuar J 7(2):44–59Google Scholar
  7. 7.
    Dhaene J, Tsanakas A, Valdez EA, Vanduffel S (2012) Optimal capital allocation principles. J Risk Insur 79(1):1–28CrossRefGoogle Scholar
  8. 8.
    Dhaene J, Vanduffel S, Tang Q, Goovaerts MJ, Kaas R, Vyncke D (2006) Risk measures and comonotonicity: a review. Stoch Models 22(4):573–606MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kalkbrener M (2005) An axiomatic approach to capital allocation. Math Financ 15(3):425–437MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kreps R (2005) Riskiness leverage models. Proc Casualty Actuar Soc XCII:31–60Google Scholar
  11. 11.
    Laeven R, Goovaertsa M (2003) An optimization approach to the dynamic allocation of economic capital. Insur Math Econ 35(2):299–319CrossRefGoogle Scholar
  12. 12.
    Myers SC, Read JA (2001) Capital allocation for insurance companies. J Risk Insur 68(4):545–580CrossRefGoogle Scholar
  13. 13.
    Overbeck L (2000) Allocation of economic capital in loan portfolios. In: Proceedings “Measuring Risk in Complex Stochastic Systems”. Lecture Notes in Statistics. Springer, New YorkGoogle Scholar
  14. 14.
    Salam R (2010). Efficient capital allocation through optimization. In: Proceedings of 2010 enterprise risk management symposium, Society of ActuariesGoogle Scholar
  15. 15.
    Tasche D (2004) Allocating portfolio economic capital to sub-portfolio. Economic capital: a practitioner guide. Risk Books, London, pp 275–302Google Scholar
  16. 16.
    Venter GG (2004) Capital allocation survey with commentary. North Am Actuar J 8(2):96–107MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Venter GG (2009) Next steps for ERM: valuation and risk pricing. In: Proceedings of 2010 enterprise risk management symposium, Society of ActuariesGoogle Scholar
  18. 18.
    Venter GG (2010) Non-tail measures and allocation of risk measures. Study Notes of Casualty Actuarial Society (CAS)Google Scholar
  19. 19.
    Wang S (2002) A set of new methods and tools for enterprise risk capital management and portfolio optimization. Casualty Actuarial Society (CAS) Summer Forum, pp 43–78Google Scholar
  20. 20.
    Zanjani G (2002) Pricing and capital allocation in catastrophe insurance. J Financ Econ 65(2):283–305CrossRefGoogle Scholar

Copyright information

© DAV / DGVFM 2013

Authors and Affiliations

  1. 1.Department of MathematicsRobert Morris UniversityMoon TownshipUSA

Personalised recommendations