European Actuarial Journal

, Volume 3, Issue 1, pp 159–190 | Cite as

Optimal risk transfers in insurance groups

  • Alexandru V. Asimit
  • Alexandru M. Badescu
  • Andreas Tsanakas
Original Research Paper

Abstract

Optimal risk transfers are derived within an insurance group consisting of two separate legal entities, operating under potentially different regulatory capital requirements and capital costs. Consistent with regulatory practice, capital requirements for each entity are computed by either a value-at-risk or an expected shortfall risk measure. The optimality criterion consists of minimising the risk-adjusted value of the total group liabilities, with valuation carried out using a cost-of-capital approach. The optimisation problems are analytically solved and it is seen that optimal risk transfers often involve the transfer of tail risk (unlimited reinsurance layers) to the more weakly regulated entity. We show that, in the absence of a capital requirement for the credit risk that specifically arises from the risk transfer, optimal risk transfers achieve capital efficiency at the cost of increasing policyholder deficit. However, when credit risk is properly reflected in the capital requirement, incentives for tail-risk transfers vanish and policyholder welfare is restored.

Keywords

Cost of capital Expected shortfall Insurance groups Optimal reinsurance Value-at-risk 

References

  1. 1.
    Acerbi C, Tasche D (2002) On the coherence of expected shortfall. J Bank Finance 26(7):1487–1503CrossRefGoogle Scholar
  2. 2.
    Albrecher H, Thonhauser S (2009) Optimality results for dividend problems in insurance. RACSAM Rev R Acad Cien Ser A Mat 103(2):295–320MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arrow KJ (1963) Uncertainty and the welfare economics of medical care. Am Econ Rev 53(5):941–973Google Scholar
  4. 4.
    Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Finance 9:203–228MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bernard C, Tian W (2010) Insurance market effects of risk management metrics. Geneva Risk Insur Rev 35:47–80CrossRefGoogle Scholar
  6. 6.
    Borch K (1960) An attempt to determine the optimum amount of stop loss reinsurance. Trans 16th Int Cong Actuar I:597–610Google Scholar
  7. 7.
    Cai J, Tan KS, Weng C, Zhang Y (2008) Optimal reinsurance under VaR and CTE risk measures. Insur Math Econ 43(1):185–196MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Carlier G, Dana R-A (2003) Pareto efficient insurance contracts when the insurer’s cost function is discontinuous. Econ Theory 21(4):871–893MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Centeno ML, Guerra M (2010) The optimal reinsurance strategy—the individual claim case. Insur Math Econ 46(3):450–460MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Cheung KC (2010) Optimal reinsurer revisited—a geometric approach. Astin Bull 40(1):221–239MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chi Y, Tan KS (2011) Optimal reinsurance under VaR and CVaR risk measures: a simplified approach. Astin Bull 42(1):487–509MathSciNetGoogle Scholar
  12. 12.
    Denuit M, Dhaene J, Goovaerts M, Kaas R (2005) Actuarial theory for dependent risks: measures, orders and models. Wiley, ChichesterGoogle Scholar
  13. 13.
    Dowd K, Blake D (2006) After VaR: the theory, estimation, and insurance applications of quantile-based risk measures. J Risk Insur 73(2):193–229CrossRefGoogle Scholar
  14. 14.
    Embrechts P, Hofert M (2010) A note on generalized inverses (Preprint).Google Scholar
  15. 15.
    EIOPA: (2011). “Equivalence Assessment of the Swiss Supervisory System in Relation to Articles 172, 227 and 260 of the Solvency II Directive", EIOPA-BoS-11-028. https://eiopa.europa.eu/consultations/consultation-papers/index.html.
  16. 16.
    EIOPA (2009) Advice for level 2 implementing measures on solvency II: supervision of risk concentration and intra-group transactions, CEIOPS-DOC-53/09. https://eiopa.europa.eu/consultations/consultation-papers/2010-2009-closed-consultations/index.html.
  17. 17.
    European Commission (2009) Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009 on the taking-up and pursuit of the business of insurance and reinsurance (Solvency II). Off J Eur Union, L335.Google Scholar
  18. 18.
    Federal Office of Private Insurance: 2006. The Swiss experience with market consistent technical provisions—the cost of capital approach. http://www.finma.ch/archiv/bpv/e/themen/00506/00552/00727/index.html.
  19. 19.
    Filipović D, Kupper M (2008) Optimal capital and risk transfers for group diversification. Math Finance 18:55–76MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gatzert N, Schmeiser H (2011) On the risk situation of financial conglomerates: does diversification matter? Financial Mark Portfolio Manag 25:3–26CrossRefGoogle Scholar
  21. 21.
    Guerra M, Centeno ML (2008) Optimal reinsurance policy: the adjustment coefficient and the expected utility criteria. Insur Math Econ 42(2):529–539MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Guerra M, Centeno ML (2010) Optimal reinsurance for variance related premium calculation principles. Astin Bull 40(1):97–121MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Van Heerwaarden AE, Kaas R, Goovaerts MJ (1989) Optimal reinsurer in the relation to ordering of risk. Insur Math Econ 8(1):11–17MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hipp C, Vogt M (2003) Optimal dynamic XL reinsurance. Astin Bull 33(2):193–207MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Hürlimann V (2003) Conditional value-at-risk bounds for compound Poisson risks and a normal approximation. J Appl Math 3:141–153CrossRefGoogle Scholar
  26. 26.
    Kaluszka M (2001) Optimal reinsurance under mean-variance premium principles. Insur Math Econ 28(1):61–67MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Kaluszka M (2005) Truncated stop loss as optimal reinsurance agreement in one-period models. Astin Bull 35(2):337–349MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kaluszka M, Okolewski A (2008) An extension of Arrow’s result on optimal reinsurance contract. J Risk Insur 75(2):275–288CrossRefGoogle Scholar
  29. 29.
    Keller P (2007) Group diversification. Geneva Pap 38:382–392CrossRefGoogle Scholar
  30. 30.
    Landsberger M, Meilijson II (1994) Comonotone allocations, Bickel Lehmann dispersion and the Arrow–Pratt measure of risk aversion. Ann Oper Res 52:97–106MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Ludkovski M, Young VR (2009) Optimal risk sharing under distorted probabilities. Math Financial Econ 2(2):87–105MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Myers SC, Read JA Jr (2001) Capital allocation for insurance companies. J Risk Insur 68(4):545–580CrossRefGoogle Scholar
  33. 33.
    Phillips RD, Cummins JD, Allen F (1998) Financial pricing of insurance in the multiple-line insurance company. J Risk Insur 65(4):597–636CrossRefGoogle Scholar
  34. 34.
    Schmidli H (2001) Optimal proportional reinsurance policies in a dynamic setting. Scand Actuar J 1:55–68MathSciNetCrossRefGoogle Scholar
  35. 35.
    Schmidli H (2002) On minimizing the ruin probability by investment and reinsurance. Ann Probab 12(3):890–907MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Schlütter S, Gründl H (2011) Who benefits from buildiung insurance groups? A welfare analysis based on optimal group risk management. ICIR working paper series Nr. 8. Goethe Universität, Frankfurt am MainGoogle Scholar
  37. 37.
    Verlaak R, Beirlant J (2003) Optimal reinsurance programs: an optimal combination of several reinsurance protections on a heterogeneous insurance Portfolio. Insur Math Econ 33(2):381–403MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Wüthrich MV, Bühlmann H, Furrer H (2010) Market-consistent actuarial valuation, 2nd edn. Springer, BerlinGoogle Scholar
  39. 39.
    Young VR (1999) Optimal insurance under Wang’s premium principle. Insur Math Econ 25(2):109–122MATHCrossRefGoogle Scholar

Copyright information

© DAV / DGVFM 2013

Authors and Affiliations

  • Alexandru V. Asimit
    • 1
  • Alexandru M. Badescu
    • 2
  • Andreas Tsanakas
    • 1
  1. 1.Cass Business SchoolCity University LondonLondonUK
  2. 2.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations