European Actuarial Journal

, Volume 1, Issue 1, pp 131–157 | Cite as

Fast remote but not extreme quantiles with multiple factors: applications to Solvency II and Enterprise Risk Management

  • Matthieu Chauvigny
  • Laurent Devineau
  • Stéphane Loisel
  • Véronique Maume-Deschamps
Original Research Paper

Abstract

For operational purposes, in Enterprise Risk Management or in insurance for example, it may be important to estimate remote (but not extreme) quantiles of some function f of some random vector. The call to f may be time- and resource-consuming so that one aims at reducing as much as possible the number of calls to f. In this paper, we propose some ways to address this problem of general interest. We then numerically analyze the performance of the method on insurance and Enterprise Risk Management real-world case studies.

Keywords

Quantile estimation Risk factors Enterprise Risk Management Accelerated algorithm Nested Simulations 

Notes

Acknowledgments

This work has been partially supported by the research chair Management de la modélisation sponsored by BNP Paribas Assurance, and by French Research National Agency (ANR) under the reference ANR-08-BLAN-0314-01.

References

  1. 1.
    Barnett V (1976) The ordering of multivariate data. J R Stat Soc Ser A 139:318–354CrossRefGoogle Scholar
  2. 2.
    Broadie M, Du Y, Moallemi C (2011) Efficient risk estimation via nested sequential simulation. Manag Sci 57(6):1172–1194Google Scholar
  3. 3.
    Chaouch M, Gannoun A, Saracco J (2009) Estimation de quantiles géométriques conditionnels et non conditionnels. Société Française de Statistiques. Journal de la SFdS 150(2):1–27Google Scholar
  4. 4.
    Charpentier A, Oulidi A (2009) Estimating allocations for Value-at-Risk portfolio optimization. Math Methods Oper Res 69(3):395–410MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chaudhuri P (1996) On a geometric notation of quantiles for multivariate data. J Am Stat Assoc 91:862–872MATHCrossRefGoogle Scholar
  6. 6.
    Chaudhuri P, Sengupta D (1993) Sign tests in multidimension: inference based on the geometry of the data cloud. J Am Stat Assoc 88:1363–1370MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Devineau L, Loisel S (2009) Construction d’un algorithme d’accélération de la méthode des simulations dans les simulations pour le calcul du capital économique Solvabilité II. Bull Français d’Actuariat 10(17):188–221Google Scholar
  8. 8.
    Devineau L, Loisel S (2009) Risk aggregation in Solvency II: how to converge the approaches of the internal models and those of the standard formula?. Bull Franais d’Actuariat 8(18):107–145Google Scholar
  9. 9.
    Einmahl J (2010) Estimating extreme quantile regions for multivariate regularly varying distributions. Journes de Statistique de la SFDS, MarseilleGoogle Scholar
  10. 10.
    Gordy M, Juneja S (2008) Nested simulation in portfolio risk measurement. In: Finance and economics discussion series. Divisions of Research and Statistics and Monetary Affairs, Federal Reserve Board, Washington, DCGoogle Scholar
  11. 11.
    Liu M, Staum J (2010) Stochastic kriging for efficient nested simulation of expected shortfall. J Risk (forthcoming)Google Scholar
  12. 12.
    McNeil A (2010) Multivariate Stress Testing for Solvency II. Risk Forum of the Institut Louis Bachelier. http://www.institutlouisbachelier.org/risk10/talk1_mcneil.pdf
  13. 13.
    McNeil A, Frey R, Embrechts P (2005) Quantitative risk management. In: Princeton series in finance. Princeton University Press, Princeton, 608 ppGoogle Scholar
  14. 14.
    Nolan J (2005) Multivariate stable densities and distribution functions: general and elliptical case. Deutsche Bundesbank’s 2005 annual fall conferenceGoogle Scholar
  15. 15.
    Rousseeuw P, Ruts I, Tukey J (1999) The bagplot: a bivariate boxplot. Am Stat 53Google Scholar
  16. 16.
    Van der Vaart (1998) Asymptotic statistics. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© DAV / DGVFM 2011

Authors and Affiliations

  • Matthieu Chauvigny
    • 1
  • Laurent Devineau
    • 1
    • 2
  • Stéphane Loisel
    • 2
  • Véronique Maume-Deschamps
    • 2
  1. 1.Milliman, ParisParisFrance
  2. 2.Laboratoire SAF EA 2429, Institut de Science Financière et d’AssurancesUniversité de Lyon, Université Lyon 1LyonFrance

Personalised recommendations