European Actuarial Journal

, Volume 1, Supplement 2, pp 151–167 | Cite as

A user-friendly approach to stochastic mortality modelling

Original Research Paper

Abstract

This paper proposes a general approach to stochastic mortality modelling. The logit transforms of annual survival probabilities are modelled by a linear combination of user-specified basis function of age. The model is easy to calibrate using the maximum likelihood method. The flexible construction and tangible interpretation of the underlying risk factors allows for an easy incorporation of population-specific characteristics and user views into the model. We fit two versions of the model into Finnish adult (18–100 years) population and mortality data, and present simulations for the future development of life spans.

Keywords

Mortality risk Longevity risk Stochastic modelling 

References

  1. 1.
    Alho JM, Hougaard Jensen S, Lassila J (eds) (2008) Uncertain demographics and fiscal sustainability. Cambridge University Press, New YorkGoogle Scholar
  2. 2.
    Alho JM, Spencer BD (2005) Statistical demography and forecasting. Springer, New YorkMATHGoogle Scholar
  3. 3.
    Aro H, Pennanen T (2011) Stochastic modelling of mortality and financial markets (manuscript)Google Scholar
  4. 4.
    Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications: analysis, algorithms, and engineering applications. MPS/SIAM series on optimization. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaGoogle Scholar
  5. 5.
    Biffis E, Blake D (2009) Mortality-linked securities and derivatives. Pensions Institute discussion paper, PI 0901Google Scholar
  6. 6.
    Blake D, Cairns AJG, Dowd K (2006) Living with mortality: longevity bonds and other mortality-linked securities. Br Actuar J 12(45):153–197Google Scholar
  7. 7.
    Booth H, Maindonald J, Smith L (2002) Applying Lee-Carter under conditions of variable mortality decline. Popul Stud 56(3):325–336CrossRefGoogle Scholar
  8. 8.
    Brouhns N, Denuit M, Vermunt J (2002) A Poisson log-bilinear regression approach to the construction of projected lifetables. Insur Math Econ 31(3):373–393MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cairns A (2000) A discussion of parameter and model uncertainty in insurance. Insur Math Econ 27:313–330MATHCrossRefGoogle Scholar
  10. 10.
    Cairns AJG, Blake D, Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J Risk Insur 73(4):687–718CrossRefGoogle Scholar
  11. 11.
    Cairns AJG, Blake D, Dowd K (2008) Modelling and management of mortality risk: a review. Scand Actuar J 2(3):79–113MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cairns AJG, Blake D, Dowd K, Coughlan GD, Epstein D, Ong A, Balevich I (2007) A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. Pensions Institute discussion paper, PI 0701Google Scholar
  13. 13.
    Currie ID, Durban M, Eilers PHC (2004) Smoothing and forecasting mortality rates. Stat Model Int J 4(4):279–298MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Dahl M (2004) Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts. Insur Math Econ 35(1):113–136MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dahl M, Moller T (2006) Valuation and hedging of life insurance liabilities with systematic mortality risk. Insur Math Econ 39(2):193–217MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    De Jong P, Tickle L (2006) Extending the Lee-Carter model of mortality projection. Math Popul Stud 13:1–18MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Delwarde A, Denuit M, Eilers P (2007) Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting: a penalised log-likelihood approach. Stat Model 7:29–48MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dowd K, Blake D, Cairns AJG, Dawson P (2006) Survivor swaps. J Risk Insur 73(1):1–17CrossRefGoogle Scholar
  19. 19.
    Hilli P, Koivu M, Pennanen T (2011) Cash-flow based valuation of pension liabilities. Eur Actuar J (this issue)Google Scholar
  20. 20.
    Hilli P, Koivu M, Pennanen T (2011) Optimal construction of a fund of funds. Eur Actuar J (this issue)Google Scholar
  21. 21.
    Lee R, Carter L (1992) Modeling and forecasting U.S. mortality. J Am Stat Assoc 87(419):659–671CrossRefGoogle Scholar
  22. 22.
    Lee R, Miller T (2001) Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38(4):537–549CrossRefGoogle Scholar
  23. 23.
    Lin Y, Cox SH (2005) Securitization of mortality risks in life annuities. J Risk Insur 72(2):227–252CrossRefGoogle Scholar
  24. 24.
    Milevsky MA, Promislow SD (2001) Mortality derivatives and the option to annuitise. Insur Math Econ 29(3):299–318 (papers presented at the 4th IME conference, Universitat de Barcelona, Barcelona, 24–26 July)Google Scholar
  25. 25.
    Nesterov Yu (2004) Introductory lectures on convex optimization: a basic course. In: Applied optimization, vol 87. Kluwer, BostonGoogle Scholar
  26. 26.
    Renshaw AE, Haberman S (2003) Lee-Carter mortality forecasting with age-specific enhancement. Insur Math Econ 33(2):255–272MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Renshaw AE, Haberman S (2006) A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insur Math Econ 38(3):556–570MATHCrossRefGoogle Scholar
  28. 28.
    Rockafellar RT, Wets RJ-B (1998) Variational analysis. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol 317. Springer, BerlinGoogle Scholar
  29. 29.
    Schwartz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar

Copyright information

© DAV / DGVFM 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Systems AnalysisAalto UniversityHelsinkiFinland
  2. 2.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations