European Actuarial Journal

, Volume 1, Issue 1, pp 57–92

Optimal dividend strategies in a Cramer–Lundberg model with capital injections and administration costs

Original Research Paper


In this paper, we consider a classical risk model with dividend payments and capital injections in the presence of both fixed and proportionals administration costs. Negative surplus or ruin is not allowed. We measure the value of a strategy by the discounted value of the dividends minus the costs. It turns out, capital injections are only made if the claim process falls below zero. Further, at the time of an injection the company may not only inject the deficit, but inject additional capital C ≥ 0 to prevent future capital injections. We derive the associated Hamilton–Jacobi–Bellman equation and show that the optimal strategy is of band type. By using Gerber–Shiu functions, we derive a method to determine numerically the solution to the integro-differential equation and the unknown value C.


  1. 1.
    Albrecher H, Thonhauser S (2008) Optimal dividend strategies for a risk process under force of interest. Insur Math Econ 43(1):134–149MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Albrecher H, Thonhauser S (2009) Optimality results for dividend problems in insurance. RACSAM Rev R Acad Cien Serie A Math 103(2):295–320MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asmussen S, Taksar M (1997) Controlled diffusion models for optimal dividend pay-out. Insur Math Econ 20(1):1–15MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Avanzi B (2009) Strategies for dividend distribution: a review. North Am Actuar J 13(2):217–251MathSciNetGoogle Scholar
  5. 5.
    Avram F, Palmowski Z, Pistorius MR (2007) On the optimal dividend problem for a spectrally negative Lévy process. Ann Appl Prob 17(1):156–180MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Azcue P, Muler N (2005) Optimal reinsurance and dividend distribution policies in the Cramér–Lundberg model. Math. Finance 15(2):261–308MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brémaud P (1981) Point processes and queues. Springer, New YorkMATHGoogle Scholar
  8. 8.
    Dickson DCM, Waters HR (2004) Some optimal dividends problems. ASTIN Bull 34(1):49–74MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    de Finetti B (1957) Su un’impostazione alternativa della teoria collettiva del rischio. In: Transactions of the XVth international congress of actuaries, vol 2, pp 433–443Google Scholar
  10. 10.
    Evans LC (1998) Partial differential equations. AMS, ProvidenceGoogle Scholar
  11. 11.
    Gerber HU (1969) Entscheidungskriterien für den zusammengesetzten Poisson-Prozess. Schweiz Verein Versicherungsmath Mitt 69:185–228Google Scholar
  12. 12.
    Gerber HU, Lin XS, Yang H (2006) A note on the dividends-penalty identity and the optimal dividend barrier. ASTIN Bull 36:489–503MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gerber HU, Shiu ESW (1998) On the time value of ruin. North Am Actuar J 8(1):1–20MathSciNetGoogle Scholar
  14. 14.
    Gerber HU, Shiu ESW, Smith N (2006) Maximizing dividends without bankruptcy. ASTIN Bull 36:5–23MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    He L, Liang Z (2009) Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs. Insur Math Econ 44(1):88–94MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jeanblanc-Piqué M, Shiryaev AN (1995) Optimization of the flow of dividends. Uspekhi Mat Nauk 50(2(302)):25–46Google Scholar
  17. 17.
    Kulenko N, Schmidli H (2008) Optimal dividend strategies in a Cramér–Lundberg model with capital injections. Insur Math Econ 43(2):270–278MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lokka A, Zervos M (2008) Optimal dividend and insurance of equity policies in the presence of proportional costs. Insur Math Econ 42(3):954–961CrossRefMathSciNetGoogle Scholar
  19. 19.
    Paulsen J (2008) Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs. SIAM J Control Optim 47(5):2201–2226MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schmidli H (2008) Stochastic control in insurance. Springer, LondonMATHGoogle Scholar
  21. 21.
    Shreve SE, Lehoczky JP, Gaver DP (1984) Optimal consumption for general diffusions with absorbing and reflecting barriers. SIAM J Control Optim 22:55–75MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Thonhauser S, Albrecher H (2007) Dividend maximization under consideration of the time value of ruin. Insur Math Econ 41(1):163–184MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© DAV / DGVFM 2011

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of CologneCologneGermany

Personalised recommendations