Advertisement

Bulletin of Mathematical Sciences

, Volume 1, Issue 2, pp 245–275 | Cite as

The Möbius function and statistical mechanics

  • F. Cellarosi
  • Ya. G. Sinai
Open Access
Article

Abstract

We consider a probabilistic model for square-free numbers, and provide limit theorems for several random variables defined in our ensemble. The limit transition corresponds to the thermodynamical limit in Statistical Mechanics. We also prove some inequalities inspired by a recent conjecture by P. Sarnak concerning the randomness in the Möbius sequence, and discuss a method of summation for the Riemann zeta function ζ(s) on the vertical line \({\mathfrak{R}s = 1}\) .

Keywords

Statistical Mechanic Arithmetic Progression Riemann Zeta Function Riemann Hypothesis Prime Number Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the following people for their invaluable comments and remarks: Giovanni Gallavotti, Andrew Granville, Nicholas Katz Alex Kontorovich, Krishnan Mody, Peter Sarnak, Christopher Skinner, Domokos Szász, Anatoly M. Vershik, Ilya Vinogradov. The second author also acknowledges the financial support from NSF, Grant DMS-0600996.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Boca F.P., Cobeli C., Zaharescu A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213(2), 433–470 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bourgain, J.: Correlation bounds for Moebius and Walsh (in preparation)Google Scholar
  3. 3.
    Bourgain, J.: Möbius Schrödinger (to appear)Google Scholar
  4. 4.
    Cellarosi, F., Sinai, Ya.G.: Non-standard limit theorems in Number theory. Prokhorov Festschrift (to appear)Google Scholar
  5. 5.
    Davenport H.: On some infinite series involving arithmetical functions (ii). Q. J. Math. 8, 313–320 (1937)MathSciNetCrossRefGoogle Scholar
  6. 6.
    de Bruijn N.G.: The asymptotic behaviour of a function occurring in the theory of primes. J. Indian Math. Soc. (N.S.) 15, 25–32 (1951)zbMATHMathSciNetGoogle Scholar
  7. 7.
    de Bruijn N.G.: On the number of positive integers ≤ x and free of prime factors > y. Nederl. Acad. Wetensch. Proc. Ser. A 54, 50–60 (1951)MathSciNetGoogle Scholar
  8. 8.
    de Bruijn N.G.: On the number of positive integers ≤ x and free prime factors > y. II. Nederl. Akad. Wetensch. Proc. Ser. A 69 Indag. Math. 28, 239–247 (1966)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dickman K.: On the frequency of numbers containing primes of a certain relative magnitude. Ark. Mat. Astr. Fys. 22 22A, 1–14 (1930)Google Scholar
  10. 10.
    Elkies N.D., McMullen C.T.: Gaps in \({{\sqrt n}}\) mod 1 and ergodic theory. Duke Math. J. 123(1), 95–139 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Erdös, P.: Wiskundige Opgaven met de Oplossingen, 21. Problem and Solution Nr. 136 (1963)Google Scholar
  12. 12.
    Erdös P., Kac M.: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1940)CrossRefGoogle Scholar
  13. 13.
    Fröberg C.-E.: On the prime zeta function. BIT 8(2), 187–202 (1968)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Translated from the Russian, annotated, and revised by K.L. Chung. With appendices by J.L. Doob and P.L. Hsu. Revised edition. Addison-Wesley Publishing Co., Reading, London (1968)Google Scholar
  15. 15.
    Goncharov V.L.: From the realm of combinatorics (in Russian). Izv. Akad. Nauk SSSR, ser. matem., 8 1, 3–48 (1944)Google Scholar
  16. 16.
    Granville, A.: Smooth numbers: computational number theory and beyond. In: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography. Math. Sci. Res. Inst. Publ., vol. 44, pp. 267–323. Cambridge University Press, Cambridge (2008)Google Scholar
  17. 17.
    Granville A., Pomerance C.: On the least prime in certain arithmetic progressions. J. Lond. Math. Soc. (2) 41(2), 193–200 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Green, B.: On (not) computing the Möbius functions using bounded depth circuits (submitted)Google Scholar
  19. 19.
    Green, B., Tao, T.: The mobius function is strongly orthogonal to nilsequences. Ann. Math (to appear)Google Scholar
  20. 20.
    Heath-Brown D.R.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. Lond. Math. Soc. (3) 64(2), 265–338 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hensley D.: The convolution powers of the Dickman function. J. Lond. Math. Soc. (2) 33(3), 395–406 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Hildebrand A.: Integers free of large prime factors and the Riemann hypothesis. Mathematika 31(2), 258–271 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)Google Scholar
  24. 24.
    Kolmogorov, A.N.: Sulla forma generale di un processo stocastico omogeneo. Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 15(6):805–808; 866–869 (1932)Google Scholar
  25. 25.
    Linnik U.V.: On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. [Mat. Sbornik] N.S. 15(57), 139–178 (1944)MathSciNetGoogle Scholar
  26. 26.
    Linnik U.V.: On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S. 15(57), 347–368 (1944)MathSciNetGoogle Scholar
  27. 27.
    Liu, J., Sarnak, P.: Integral points on quadrics in three variables whose coordinates have few prime factors (in preparation)Google Scholar
  28. 28.
    Mertens F.: Ein beitrag zur analytischen zahlentheorie. Ueber die vertheilung der primzahlen. J. Reine Angew. Math. 78, 46–62 (1874)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Pappalardi, F.: A survey on k-freeness. In: Number Theory. Ramanujan Math. Soc. Lect. Notes Ser., vol. 1, pp. 71–88. Ramanujan Math. Soc., Mysore (2005)Google Scholar
  30. 30.
    Pomerance C.: A note on the least prime in an arithmetic progression. J. Number Theory 12(2), 218–223 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Sarnak, P.: Möbius randomness and dynamics. Lecture Slides Summer 2010. http://www.math.princeton.edu/sarnak/Mobius%20lectures%20Summer%202010.pdf
  32. 32.
    Sarnak, P., Ubis, A.: The horocycle flow at prime values (in preparation)Google Scholar
  33. 33.
    Vershik A.M.: Asymptotic distribution of decompositions of natural numbers into prime divisors. Dokl. Akad. Nauk SSSR 289(2), 269–272 (1986)MathSciNetGoogle Scholar
  34. 34.
    Vershik, A.M.: Does a Lebesgue measure in an infinite-dimensional space exist? Tr. Mat. Inst. Steklova 259(Anal. i Osob. Ch. 2):256–281 (2007)Google Scholar
  35. 35.
    Vershik A.M., Schmidt A.A.: Limit measures that arise in the asymptotic theory of symmetric groups. I. Teor. Verojatnost. i Primenen. 22(1), 72–88 (1977)MathSciNetGoogle Scholar
  36. 36.
    Vershik A.M., Schmidt A.A.: Limit measures that arise in the asymptotic theory of symmetric groups. II. Teor. Verojatnost. i Primenen. 23(1), 42–54 (1978)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Xylouris, T.: Über die Linniksche Konstante. Diplomarbeit, Universität Bonn. arXiv:0906.2749v1 (2009)Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations