Advertisement

Bipolar FPSS-tsheory with applications in decision making

  • Irfan DeliEmail author
  • Faruk Karaaslan
Article
  • 11 Downloads

Abstract

In 1999, the theory of soft sets introduced by Molodtsov has an important tool in order to cope with uncertain, fuzzy and not clearly defined objects. However, it should be noticed that in many real applications, the soft set needs to be specified from a parametrization viewpoint. Therefore, we define the concept of the bipolar fuzzy parameterized soft(bfps) sets and its set-theoretical operations. The bfps set is a mapping from a bipolar fuzzy set over parameter set to the power set of the initial universe. Then, we prove a few propositions on the bfps sets. Furthermore, we also propose a parameter reduction method to take a better decision by using soft level sets of bfps set defined in this paper.

Keywords

Soft set Bipolar fuzzy set Threshold on parameter set Level set Parameter reductions Decision making 

Notes

References

  1. 1.
    Agarwal, M., Biswas, K.K., Hanmandlu, M.: Generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl. Soft Comput. 13, 3552–3566 (2013)CrossRefGoogle Scholar
  2. 2.
    Ali, M.I., Feng, F., Liu, X., Min, W.K., Shabir, M.: On some new operations in soft set theory. Comput. Math. Appl. 57, 1547–1553 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arora, R., Garg, H.: Robust aggregation operators for multi-criteria decision making with intuitionistic fuzzy soft set environment. Scientia Iranica 25(2), 931–42 (2018)Google Scholar
  4. 4.
    Arora, R., Garg, H.: Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Scientia Iranica. 25(1), 466–82 (2018)Google Scholar
  5. 5.
    Arora, R., Garg, H.: A robust correlation coefficient measure of dual hesistant fuzzy soft sets and their application in decision making. Eng. Appl. Artif. Intel. 72, 80–92 (2018)CrossRefGoogle Scholar
  6. 6.
    Aslam, M., Abdullah, S., Ullah, K.: Bipolar fuzzy soft sets and its applications in decision making problem. J. Intell. Fuzzy Syst. 27(2), 729–742 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)zbMATHCrossRefGoogle Scholar
  8. 8.
    Basu, T.M., Mahapatra, N.K., Mondal, S.K.: A balanced solution of a fuzzy soft set based decision making problem in medical science. Appl. Soft Comput. 12, 3260–3275 (2012)CrossRefGoogle Scholar
  9. 9.
    Bosc, P., Pivert, O.: On a fuzzy bipolar relational algebra. Inf. Sci. 219, 1–16 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chen, D.G., Tsang, E.C.C., Yeung, D.S., Xizhao, W.: The parameterization reduction of soft sets and its applications. Comput. Math. Appl. 49, 757–763 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Çağman, N., Çıtak, F., Enginoğlu, S.: FP-soft set theory and its applications. Ann. Fuzzy Math. inform. 2(2), 219–226 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Çağman, N., Çıtak, F., Enginoğlu, S.: Fuzzy parameterized fuzzy soft set theory and its applications. Turk. J. Fuzzy Syst. 1(1), 21–35 (2010)zbMATHGoogle Scholar
  13. 13.
    Çağman, N., Enginoğlu, S., Çıtak, F.: Fuzzy soft set theory and its applications. Iran. J. Fuzzy Syst. 8(3), 137–147 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Çağman, N., Enginoğlu, S.: Soft set theory and uni-int decision making. Eur. J. Oper. Res. 207, 848–855 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Çağman, N., Deli, I.: Means of FP-soft sets and its applications. Hacettepe J. Math. Stat. 41(5), 615–625 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Çağman, N., Deli, I.: Product of FP-soft sets and its applications. Hacettepe J. Math. Stat. 41(3), 365–374 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Deli, I., Çağman, N.: Relations on FP-soft sets applied to decision making problems. J. New Theory 3, 98–107 (2015)Google Scholar
  18. 18.
    Deli, I., Çağman, N.: Similarity measure of IFS-sets and its application in medical diagnosis. Ann. Fuzzy Math. Inform. 11(5), 841–854 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Deli, I., Çağman, N.: Intuitionistic fuzzy parameterized soft set theory and its decision making. Appl. Soft Comput. 28, 109–113 (2015)CrossRefGoogle Scholar
  20. 20.
    Deli, I., Karataş, S.: Interval valued intuitionistic fuzzy parameterized soft set theory and its decision making. J. Intell. Fuzzy Syst. 30(3), 2073–2082 (2016)zbMATHCrossRefGoogle Scholar
  21. 21.
    Deng, T., Wang, X.: An object-parameter approach to predicting unknown data in incomplete fuzzy soft sets. Appl. Math. Model. 37(6), 4139–4146 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Feng, F., Jun, Y.B., Liu, X., Li, L.: An adjustable approach to fuzzy soft sets based decision making. J. Comput. Appl. Math. 234, 10–20 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Garg, H., Kumar, K.: A novel correlation coefficient of intuitionistic fuzzy sets based on the connection number of set pair analysis and its application. Sci. Iran. E 25(4), 2373–2388 (2018)Google Scholar
  24. 24.
    Garg, H., Arora, R.: A nonlinear-programming methodology for multi-attribute decision-making problem with interval-valued intuitionistic fuzzy soft sets information. Appl. Intell. (2017).  https://doi.org/10.1007/s10489-017-1035-8 CrossRefGoogle Scholar
  25. 25.
    Garg, H., Agarwal, N., Tripathi, A.: Fuzzy number intuitionistic fuzzy soft sets and its properties. J. Fuzzy Set. Valued Anal. 3, 196–213 (2016)zbMATHCrossRefGoogle Scholar
  26. 26.
    Jiang, Y., Tang, Y., Chen, Q., Liu, H., Tang, J.: Interval-valued intuitionistic fuzzy soft set and their properties. Comput. Math. Appl. 60(3), 906–918 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Jiang, Y., Tang, Y., Chen, Q.: An adjustable approach to intuitionistic fuzzy soft sets based decision making. Appl. Math. Model. 35, 824–836 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Jiang, Y., Tang, Y., Liu, H., Chen, Zhenzhou: Entropy on intuitionistic fuzzy soft sets and on interval-valued fuzzy soft sets. Inf. Sci. 240(10), 95–114 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Karaaslan, F.: Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets with applications in decision making. Ann. Fuzzy Math. Inform. 11(4), 607–619 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kang, M. K., Kang, J. G.: Bipolar fuzzy set theory applied to sub-semigroups with operators in semigroups. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 19/1, 23–35 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kong, Z., Gao, L.Q., Wang, L.F., Li, S.: The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl. 56, 3029–3037 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lee, K.M.: Bipolar-valued fuzzy sets and their operations. In: Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, pp. 307–312 (2000)Google Scholar
  33. 33.
    Lee, K.J.: Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras. Bull. Malays. Math. Sci. Soc. 32(3), 361–373 (2009)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Maji, P.K., Bismas, R., Roy, A.R.: Fuzzy soft sets. J. Fuzzy Math. 9(3), 589–602 (2001)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Maji, P.K., Roy, A.R., Biswas, R.: On intuitionistic fuzzy soft sets. J. Fuzzy Math. 12(3), 669–683 (2004)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Maji, P.K., Roy, A.R., Biswas, R.: An application of soft sets in a decision making problem. Comput. Math. Appl. 44, 1077–1083 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Maji, P.K., Bismas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 45, 555–562 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Majumdar, P., Samanta, S.K.: Generalized fuzzy soft sets. Comput. Math. Appl. 59(4), 1425–1432 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Molodtsov, D.A.: Soft set theory-first results. Comput. Math. Appl. 37, 19–31 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Muthukumar, P., Krishnan, G.S.S.: A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis. Appl. Soft Comput. 41, 148–56 (2016)CrossRefGoogle Scholar
  41. 41.
    Pawlak, Z.: Rough sets. Int. J. Inform. Comput. Sci. 11, 341–356 (1982)zbMATHCrossRefGoogle Scholar
  42. 42.
    Peng, X., Dai, J.G.: Hesitant fuzzy soft decision making methods based on WASPAS, MABAC and COPRAS with combined weights. J. Intell. Fuzzy Syst. 33(2), 1313–25 (2017)zbMATHCrossRefGoogle Scholar
  43. 43.
    Peng, X., Yang, Y.: Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight. Appl. Soft Comput. 54, 415–430 (2017)CrossRefGoogle Scholar
  44. 44.
    Peng, X., Yang, Y.: Interval-valued hesitant fuzzy soft sets and their application in decision making. Fundamenta Informaticae 141(1), 71–93 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Peng, X., Yang, Y.: Research on dual hesistant fuzzy soft set. Comput. Eng. 41, 262–267 (2015)Google Scholar
  46. 46.
    Rajarajeswari, P., Dhanalakshmi, P.: Similarity measures of intuitionistic fuzzy soft sets and its application in medical diagnosis. Int. J. Math. Arch. 5(5), 143–49 (2014)zbMATHGoogle Scholar
  47. 47.
    Qin, K., Hong, Z.: On soft equality. J. Comput. Appl. Math. 234(5), 1347–1355 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Wan, S.P., Xu, J.: A method for multi-attribute group decision-making with triangular intuitionistic fuzzy numbers application to trustworthy service selection. Sci. Iran. E 24(2), 794–807 (2017)Google Scholar
  49. 49.
    Yu, D.: Intuitionistic fuzzy Choquet aggregation operator based on Einstein operation laws. Sci. Ira. E 20(6), 2109–2122 (2013)Google Scholar
  50. 50.
    Yue, Z., Jia, Y.: A projection-based approach to intuitionistic fuzzy group decision making. Sci. Iran. E 24(3), 1505–1518 (2017)Google Scholar
  51. 51.
    Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar
  52. 52.
    Zorlununa, I., Atmaca, S.: Notes on Fuzzy Parametrized Soft Sets. Cumhuriyet Sci. J. 39(4), 818–827 (2018)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Muallim Rıfat Faculty of Education7 Aralık UniversityKilisTurkey
  2. 2.Department of Mathematics, Faculty of SciencesÇankırı Karatekin UniversityÇankırıTurkey

Personalised recommendations