Advertisement

Determinant for the cyclic heptadiagonal matrices with Toeplitz structure

  • Maryam Shams SolaryEmail author
  • Ensieh Sadeghy
Article
  • 2 Downloads

Abstract

In this paper, we extend two efficient computational algorithms for the determinant evaluation of general cyclic heptadiagonal matrices with Toeplitz structure. We try to design two numerical algorithms by a certain type of matrix reordering in matrix partition and another algorithm by using the transformation of a block upper triangular transformation for the cyclic heptadiagonal Toeplitz matrices. The cost of these algorithms is about \(11n+O(\hbox {log}\,n)\) for computing \(n\hbox {th}\) order cyclic heptadiagonal Toeplitz determinants. Some numerical experiments are presented to demonstrate the performance and effectiveness of the proposed algorithms with other published algorithms.

Keywords

Cyclic heptadiagonal matrices Toeplitz matrices Determinant 

Mathematics Subject Classification

15A15 15B05 65F40 

Notes

References

  1. 1.
    Barnett, S.: Matrices: Methods and Applications. Oxford University Press, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Dana, M., Yousefi, R.: Formulas for the Drazin inverse of matrices with new conditions and its applications. Int. J. Appl. Comput. Math. 4, 4 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  4. 4.
    Jia, J.T., Li, S.M.: Numerical algorithm for the determinant evaluation of cyclic pentadiagonal matrices with Toeplitz structure. Numer. Algorithms 71, 337–348 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jia, J.T., Li, S.M.: On determinants of cyclic pentadiagonal matrices with Toeplitz structure. Comput. Math. Appl 73, 304–309 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Karawia, A.A.: On the inverse of general cyclic heptadiagonal matrices. ARS Comb. J. 125, 161–171 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Navon, I.M.: PENT, a periodic pentadiagonal systems solver. Commun. Appl. Numer. Methods 3, 63–69 (1987)CrossRefGoogle Scholar
  8. 8.
    Rosen, K.H.: Discrete Mathematices and its Applications. McGraw-Hill, New York (2007)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsPayame Noor UniversityTehranIran

Personalised recommendations